This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressust.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| ressust.t | ⊢ 𝑇 = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) | ||
| Assertion | ressust | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋 ) → 𝑇 ∈ ( UnifOn ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressust.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 2 | ressust.t | ⊢ 𝑇 = ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) | |
| 3 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 4 | 3 | ssex | ⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 ∈ V ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 6 | ressuss | ⊢ ( 𝐴 ∈ V → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋 ) → ( UnifSt ‘ ( 𝑊 ↾s 𝐴 ) ) = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) |
| 8 | 2 7 | eqtrid | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋 ) → 𝑇 = ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ) |
| 9 | eqid | ⊢ ( UnifSt ‘ 𝑊 ) = ( UnifSt ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) | |
| 11 | 1 9 10 | isusp | ⊢ ( 𝑊 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝑋 ) ∧ ( TopOpen ‘ 𝑊 ) = ( unifTop ‘ ( UnifSt ‘ 𝑊 ) ) ) ) |
| 12 | 11 | simplbi | ⊢ ( 𝑊 ∈ UnifSp → ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
| 13 | trust | ⊢ ( ( ( UnifSt ‘ 𝑊 ) ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋 ) → ( ( UnifSt ‘ 𝑊 ) ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
| 15 | 8 14 | eqeltrd | ⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐴 ⊆ 𝑋 ) → 𝑇 ∈ ( UnifOn ‘ 𝐴 ) ) |