This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure on uniform space W . This proof uses a trick with fvprc to avoid requiring W to be a set. (Contributed by Thierry Arnoux, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ussval.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| ussval.2 | ⊢ 𝑈 = ( UnifSet ‘ 𝑊 ) | ||
| Assertion | ussval | ⊢ ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | ussval.2 | ⊢ 𝑈 = ( UnifSet ‘ 𝑊 ) | |
| 3 | 1 1 | xpeq12i | ⊢ ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) |
| 4 | 2 3 | oveq12i | ⊢ ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( UnifSet ‘ 𝑤 ) = ( UnifSet ‘ 𝑊 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 7 | 6 | sqxpeqd | ⊢ ( 𝑤 = 𝑊 → ( ( Base ‘ 𝑤 ) × ( Base ‘ 𝑤 ) ) = ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
| 8 | 5 7 | oveq12d | ⊢ ( 𝑤 = 𝑊 → ( ( UnifSet ‘ 𝑤 ) ↾t ( ( Base ‘ 𝑤 ) × ( Base ‘ 𝑤 ) ) ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
| 9 | df-uss | ⊢ UnifSt = ( 𝑤 ∈ V ↦ ( ( UnifSet ‘ 𝑤 ) ↾t ( ( Base ‘ 𝑤 ) × ( Base ‘ 𝑤 ) ) ) ) | |
| 10 | ovex | ⊢ ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝑊 ∈ V → ( UnifSt ‘ 𝑊 ) = ( ( UnifSet ‘ 𝑊 ) ↾t ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
| 12 | 4 11 | eqtr4id | ⊢ ( 𝑊 ∈ V → ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) ) |
| 13 | 0rest | ⊢ ( ∅ ↾t ( 𝐵 × 𝐵 ) ) = ∅ | |
| 14 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( UnifSet ‘ 𝑊 ) = ∅ ) | |
| 15 | 2 14 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝑈 = ∅ ) |
| 16 | 15 | oveq1d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( ∅ ↾t ( 𝐵 × 𝐵 ) ) ) |
| 17 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( UnifSt ‘ 𝑊 ) = ∅ ) | |
| 18 | 13 16 17 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) ) |
| 19 | 12 18 | pm2.61i | ⊢ ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) |