This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzrcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzrcl | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzrcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | noel | ⊢ ¬ 𝑋 ∈ ∅ | |
| 4 | fvprc | ⊢ ( ¬ 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ∅ ) | |
| 5 | 2 4 | eqtrid | ⊢ ( ¬ 𝑀 ∈ V → 𝑍 = ∅ ) |
| 6 | 5 | fveq1d | ⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ( ∅ ‘ 𝑆 ) ) |
| 7 | 0fv | ⊢ ( ∅ ‘ 𝑆 ) = ∅ | |
| 8 | 6 7 | eqtrdi | ⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝑆 ) = ∅ ) |
| 9 | 8 | eleq2d | ⊢ ( ¬ 𝑀 ∈ V → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ 𝑋 ∈ ∅ ) ) |
| 10 | 3 9 | mtbiri | ⊢ ( ¬ 𝑀 ∈ V → ¬ 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 11 | 10 | con4i | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑀 ∈ V ) |
| 12 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 13 | 1 12 2 | cntzfval | ⊢ ( 𝑀 ∈ V → 𝑍 = ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑍 = ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
| 15 | 14 | dmeqd | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → dom 𝑍 = dom ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ) |
| 16 | eqid | ⊢ ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) = ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) | |
| 17 | 16 | dmmptss | ⊢ dom ( 𝑥 ∈ 𝒫 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) 𝑦 ) } ) ⊆ 𝒫 𝐵 |
| 18 | 15 17 | eqsstrdi | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → dom 𝑍 ⊆ 𝒫 𝐵 ) |
| 19 | elfvdm | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ∈ dom 𝑍 ) | |
| 20 | 18 19 | sseldd | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 21 | 20 | elpwid | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 22 | 11 21 | jca | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵 ) ) |