This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resscntz.p | |- H = ( G |`s A ) |
|
| resscntz.z | |- Z = ( Cntz ` G ) |
||
| resscntz.y | |- Y = ( Cntz ` H ) |
||
| Assertion | resscntz | |- ( ( A e. V /\ S C_ A ) -> ( Y ` S ) = ( ( Z ` S ) i^i A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resscntz.p | |- H = ( G |`s A ) |
|
| 2 | resscntz.z | |- Z = ( Cntz ` G ) |
|
| 3 | resscntz.y | |- Y = ( Cntz ` H ) |
|
| 4 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 5 | 4 3 | cntzrcl | |- ( x e. ( Y ` S ) -> ( H e. _V /\ S C_ ( Base ` H ) ) ) |
| 6 | 5 | simprd | |- ( x e. ( Y ` S ) -> S C_ ( Base ` H ) ) |
| 7 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 8 | 1 7 | ressbasss | |- ( Base ` H ) C_ ( Base ` G ) |
| 9 | 6 8 | sstrdi | |- ( x e. ( Y ` S ) -> S C_ ( Base ` G ) ) |
| 10 | 9 | a1i | |- ( ( A e. V /\ S C_ A ) -> ( x e. ( Y ` S ) -> S C_ ( Base ` G ) ) ) |
| 11 | elinel1 | |- ( x e. ( ( Z ` S ) i^i A ) -> x e. ( Z ` S ) ) |
|
| 12 | 7 2 | cntzrcl | |- ( x e. ( Z ` S ) -> ( G e. _V /\ S C_ ( Base ` G ) ) ) |
| 13 | 12 | simprd | |- ( x e. ( Z ` S ) -> S C_ ( Base ` G ) ) |
| 14 | 11 13 | syl | |- ( x e. ( ( Z ` S ) i^i A ) -> S C_ ( Base ` G ) ) |
| 15 | 14 | a1i | |- ( ( A e. V /\ S C_ A ) -> ( x e. ( ( Z ` S ) i^i A ) -> S C_ ( Base ` G ) ) ) |
| 16 | elin | |- ( x e. ( A i^i ( Base ` G ) ) <-> ( x e. A /\ x e. ( Base ` G ) ) ) |
|
| 17 | 1 7 | ressbas | |- ( A e. V -> ( A i^i ( Base ` G ) ) = ( Base ` H ) ) |
| 18 | 17 | eleq2d | |- ( A e. V -> ( x e. ( A i^i ( Base ` G ) ) <-> x e. ( Base ` H ) ) ) |
| 19 | 16 18 | bitr3id | |- ( A e. V -> ( ( x e. A /\ x e. ( Base ` G ) ) <-> x e. ( Base ` H ) ) ) |
| 20 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 21 | 1 20 | ressplusg | |- ( A e. V -> ( +g ` G ) = ( +g ` H ) ) |
| 22 | 21 | oveqd | |- ( A e. V -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 23 | 21 | oveqd | |- ( A e. V -> ( y ( +g ` G ) x ) = ( y ( +g ` H ) x ) ) |
| 24 | 22 23 | eqeq12d | |- ( A e. V -> ( ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 25 | 24 | ralbidv | |- ( A e. V -> ( A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) <-> A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) |
| 26 | 19 25 | anbi12d | |- ( A e. V -> ( ( ( x e. A /\ x e. ( Base ` G ) ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
| 27 | 26 | ad2antrr | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( ( ( x e. A /\ x e. ( Base ` G ) ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
| 28 | anass | |- ( ( ( x e. A /\ x e. ( Base ` G ) ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
|
| 29 | 27 28 | bitr3di | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) ) |
| 30 | ssin | |- ( ( S C_ A /\ S C_ ( Base ` G ) ) <-> S C_ ( A i^i ( Base ` G ) ) ) |
|
| 31 | 17 | sseq2d | |- ( A e. V -> ( S C_ ( A i^i ( Base ` G ) ) <-> S C_ ( Base ` H ) ) ) |
| 32 | 30 31 | bitrid | |- ( A e. V -> ( ( S C_ A /\ S C_ ( Base ` G ) ) <-> S C_ ( Base ` H ) ) ) |
| 33 | 32 | biimpd | |- ( A e. V -> ( ( S C_ A /\ S C_ ( Base ` G ) ) -> S C_ ( Base ` H ) ) ) |
| 34 | 33 | impl | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> S C_ ( Base ` H ) ) |
| 35 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 36 | 4 35 3 | elcntz | |- ( S C_ ( Base ` H ) -> ( x e. ( Y ` S ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
| 37 | 34 36 | syl | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( Y ` S ) <-> ( x e. ( Base ` H ) /\ A. y e. S ( x ( +g ` H ) y ) = ( y ( +g ` H ) x ) ) ) ) |
| 38 | elin | |- ( x e. ( ( Z ` S ) i^i A ) <-> ( x e. ( Z ` S ) /\ x e. A ) ) |
|
| 39 | 38 | biancomi | |- ( x e. ( ( Z ` S ) i^i A ) <-> ( x e. A /\ x e. ( Z ` S ) ) ) |
| 40 | 7 20 2 | elcntz | |- ( S C_ ( Base ` G ) -> ( x e. ( Z ` S ) <-> ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
| 41 | 40 | adantl | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( Z ` S ) <-> ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) |
| 42 | 41 | anbi2d | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( ( x e. A /\ x e. ( Z ` S ) ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) ) |
| 43 | 39 42 | bitrid | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( ( Z ` S ) i^i A ) <-> ( x e. A /\ ( x e. ( Base ` G ) /\ A. y e. S ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) ) ) |
| 44 | 29 37 43 | 3bitr4d | |- ( ( ( A e. V /\ S C_ A ) /\ S C_ ( Base ` G ) ) -> ( x e. ( Y ` S ) <-> x e. ( ( Z ` S ) i^i A ) ) ) |
| 45 | 44 | ex | |- ( ( A e. V /\ S C_ A ) -> ( S C_ ( Base ` G ) -> ( x e. ( Y ` S ) <-> x e. ( ( Z ` S ) i^i A ) ) ) ) |
| 46 | 10 15 45 | pm5.21ndd | |- ( ( A e. V /\ S C_ A ) -> ( x e. ( Y ` S ) <-> x e. ( ( Z ` S ) i^i A ) ) ) |
| 47 | 46 | eqrdv | |- ( ( A e. V /\ S C_ A ) -> ( Y ` S ) = ( ( Z ` S ) i^i A ) ) |