This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018) (Proof shortened by AV, 16-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswcshw | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 | ⊢ ( ∅ cyclShift 𝐼 ) = ∅ | |
| 2 | repsw0 | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 repeatS 0 ) = ∅ ) | |
| 3 | 2 | oveq1d | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 0 ) cyclShift 𝐼 ) = ( ∅ cyclShift 𝐼 ) ) |
| 4 | 1 3 2 | 3eqtr4a | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑆 repeatS 0 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 0 ) ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 0 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 0 ) ) |
| 6 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑆 repeatS 𝑁 ) = ( 𝑆 repeatS 0 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( ( 𝑆 repeatS 0 ) cyclShift 𝐼 ) ) |
| 8 | 7 6 | eqeq12d | ⊢ ( 𝑁 = 0 → ( ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 𝑁 ) ↔ ( ( 𝑆 repeatS 0 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 0 ) ) ) |
| 9 | 5 8 | imbitrrid | ⊢ ( 𝑁 = 0 → ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 𝑁 ) ) ) |
| 10 | idd | ⊢ ( ¬ 𝑁 = 0 → ( 𝑆 ∈ 𝑉 → 𝑆 ∈ 𝑉 ) ) | |
| 11 | df-ne | ⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) | |
| 12 | elnnne0 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) | |
| 13 | 12 | simplbi2com | ⊢ ( 𝑁 ≠ 0 → ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ ) ) |
| 14 | 11 13 | sylbir | ⊢ ( ¬ 𝑁 = 0 → ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ ) ) |
| 15 | idd | ⊢ ( ¬ 𝑁 = 0 → ( 𝐼 ∈ ℤ → 𝐼 ∈ ℤ ) ) | |
| 16 | 10 14 15 | 3anim123d | ⊢ ( ¬ 𝑁 = 0 → ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) ) ) |
| 17 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 18 | 17 | anim2i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
| 19 | repsw | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) |
| 21 | cshword | ⊢ ( ( ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) ) | |
| 22 | 20 21 | stoic3 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) ) |
| 23 | repswlen | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) | |
| 24 | 18 23 | syl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |
| 25 | 24 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) = ( 𝐼 mod 𝑁 ) ) |
| 26 | 25 24 | opeq12d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 〈 ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) 〉 = 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) 〉 ) = ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) ) |
| 28 | 25 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) = ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod 𝑁 ) ) ) |
| 29 | 27 28 | oveq12d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) = ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod 𝑁 ) ) ) ) |
| 30 | 29 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) = ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod 𝑁 ) ) ) ) |
| 31 | 18 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) |
| 32 | zmodcl | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 mod 𝑁 ) ∈ ℕ0 ) | |
| 33 | 32 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) ∈ ℕ0 ) |
| 34 | 17 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → 𝑁 ∈ ℕ0 ) |
| 35 | 33 34 | jca | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 mod 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 36 | 35 | 3adant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 mod 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
| 37 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 38 | 37 | leidd | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≤ 𝑁 ) |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → 𝑁 ≤ 𝑁 ) |
| 40 | repswswrd | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ( 𝐼 mod 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑁 ≤ 𝑁 ) → ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) = ( 𝑆 repeatS ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ) ) | |
| 41 | 31 36 39 40 | syl3anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) = ( 𝑆 repeatS ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ) ) |
| 42 | simp1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → 𝑆 ∈ 𝑉 ) | |
| 43 | 17 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → 𝑁 ∈ ℕ0 ) |
| 44 | zmodfzp1 | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 mod 𝑁 ) ∈ ( 0 ... 𝑁 ) ) | |
| 45 | 44 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) ∈ ( 0 ... 𝑁 ) ) |
| 46 | 45 | 3adant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) ∈ ( 0 ... 𝑁 ) ) |
| 47 | repswpfx | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ ( 𝐼 mod 𝑁 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod 𝑁 ) ) = ( 𝑆 repeatS ( 𝐼 mod 𝑁 ) ) ) | |
| 48 | 42 43 46 47 | syl3anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod 𝑁 ) ) = ( 𝑆 repeatS ( 𝐼 mod 𝑁 ) ) ) |
| 49 | 41 48 | oveq12d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod 𝑁 ) ) ) = ( ( 𝑆 repeatS ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ) ++ ( 𝑆 repeatS ( 𝐼 mod 𝑁 ) ) ) ) |
| 50 | 32 | nn0red | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 mod 𝑁 ) ∈ ℝ ) |
| 51 | 50 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) ∈ ℝ ) |
| 52 | 37 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 53 | zre | ⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) | |
| 54 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 55 | modlt | ⊢ ( ( 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( 𝐼 mod 𝑁 ) < 𝑁 ) | |
| 56 | 53 54 55 | syl2anr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) < 𝑁 ) |
| 57 | 51 52 56 | ltled | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) ≤ 𝑁 ) |
| 58 | 57 | 3adant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) ≤ 𝑁 ) |
| 59 | 33 | 3adant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝐼 mod 𝑁 ) ∈ ℕ0 ) |
| 60 | nn0sub | ⊢ ( ( ( 𝐼 mod 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐼 mod 𝑁 ) ≤ 𝑁 ↔ ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ∈ ℕ0 ) ) | |
| 61 | 59 43 60 | syl2anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝐼 mod 𝑁 ) ≤ 𝑁 ↔ ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ∈ ℕ0 ) ) |
| 62 | 58 61 | mpbid | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ∈ ℕ0 ) |
| 63 | repswccat | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ∈ ℕ0 ∧ ( 𝐼 mod 𝑁 ) ∈ ℕ0 ) → ( ( 𝑆 repeatS ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ) ++ ( 𝑆 repeatS ( 𝐼 mod 𝑁 ) ) ) = ( 𝑆 repeatS ( ( 𝑁 − ( 𝐼 mod 𝑁 ) ) + ( 𝐼 mod 𝑁 ) ) ) ) | |
| 64 | 42 62 59 63 | syl3anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS ( 𝑁 − ( 𝐼 mod 𝑁 ) ) ) ++ ( 𝑆 repeatS ( 𝐼 mod 𝑁 ) ) ) = ( 𝑆 repeatS ( ( 𝑁 − ( 𝐼 mod 𝑁 ) ) + ( 𝐼 mod 𝑁 ) ) ) ) |
| 65 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 66 | 65 | adantl | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 67 | 32 | nn0cnd | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 mod 𝑁 ) ∈ ℂ ) |
| 68 | 66 67 | npcand | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 − ( 𝐼 mod 𝑁 ) ) + ( 𝐼 mod 𝑁 ) ) = 𝑁 ) |
| 69 | 68 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝑁 − ( 𝐼 mod 𝑁 ) ) + ( 𝐼 mod 𝑁 ) ) = 𝑁 ) |
| 70 | 69 | 3adant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝑁 − ( 𝐼 mod 𝑁 ) ) + ( 𝐼 mod 𝑁 ) ) = 𝑁 ) |
| 71 | 70 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( 𝑆 repeatS ( ( 𝑁 − ( 𝐼 mod 𝑁 ) ) + ( 𝐼 mod 𝑁 ) ) ) = ( 𝑆 repeatS 𝑁 ) ) |
| 72 | 49 64 71 | 3eqtrd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( ( 𝑆 repeatS 𝑁 ) substr 〈 ( 𝐼 mod 𝑁 ) , 𝑁 〉 ) ++ ( ( 𝑆 repeatS 𝑁 ) prefix ( 𝐼 mod 𝑁 ) ) ) = ( 𝑆 repeatS 𝑁 ) ) |
| 73 | 22 30 72 | 3eqtrd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 𝑁 ) ) |
| 74 | 16 73 | syl6 | ⊢ ( ¬ 𝑁 = 0 → ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 𝑁 ) ) ) |
| 75 | 9 74 | pm2.61i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ ) → ( ( 𝑆 repeatS 𝑁 ) cyclShift 𝐼 ) = ( 𝑆 repeatS 𝑁 ) ) |