This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswpfx | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) = ( 𝑆 repeatS 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | repsw | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) |
| 3 | repswlen | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) | |
| 4 | 3 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) = ( 0 ... 𝑁 ) ) |
| 5 | 4 | eleq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ↔ 𝐿 ∈ ( 0 ... 𝑁 ) ) ) |
| 6 | 5 | biimp3ar | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) |
| 7 | pfxlen | ⊢ ( ( ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) = 𝐿 ) | |
| 8 | 2 6 7 | syl2anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) = 𝐿 ) |
| 9 | elfznn0 | ⊢ ( 𝐿 ∈ ( 0 ... 𝑁 ) → 𝐿 ∈ ℕ0 ) | |
| 10 | repswlen | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝐿 ) ) = 𝐿 ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( 𝑆 repeatS 𝐿 ) ) = 𝐿 ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( 𝑆 repeatS 𝐿 ) ) = 𝐿 ) |
| 13 | 8 12 | eqtr4d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) = ( ♯ ‘ ( 𝑆 repeatS 𝐿 ) ) ) |
| 14 | simpl1 | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → 𝑆 ∈ 𝑉 ) | |
| 15 | simpl2 | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → 𝑁 ∈ ℕ0 ) | |
| 16 | elfzuz3 | ⊢ ( 𝐿 ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐿 ) ) | |
| 17 | 16 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐿 ) ) |
| 18 | 8 | fveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ℤ≥ ‘ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) = ( ℤ≥ ‘ 𝐿 ) ) |
| 19 | 17 18 | eleqtrrd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) |
| 20 | fzoss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ⊆ ( 0 ..^ 𝑁 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 22 | 21 | sselda | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
| 23 | repswsymb | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑖 ) = 𝑆 ) | |
| 24 | 14 15 22 23 | syl3anc | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑖 ) = 𝑆 ) |
| 25 | 2 | adantr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ) |
| 26 | 6 | adantr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) |
| 27 | 8 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) = ( 0 ..^ 𝐿 ) ) |
| 28 | 27 | eleq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ 𝐿 ) ) ) |
| 29 | 28 | biimpa | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝐿 ) ) |
| 30 | pfxfv | ⊢ ( ( ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝐿 ) ) → ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ‘ 𝑖 ) = ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑖 ) ) | |
| 31 | 25 26 29 30 | syl3anc | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ‘ 𝑖 ) = ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑖 ) ) |
| 32 | 9 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → 𝐿 ∈ ℕ0 ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → 𝐿 ∈ ℕ0 ) |
| 34 | repswsymb | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ 𝑖 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑆 repeatS 𝐿 ) ‘ 𝑖 ) = 𝑆 ) | |
| 35 | 14 33 29 34 | syl3anc | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → ( ( 𝑆 repeatS 𝐿 ) ‘ 𝑖 ) = 𝑆 ) |
| 36 | 24 31 35 | 3eqtr4d | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ) → ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ‘ 𝑖 ) = ( ( 𝑆 repeatS 𝐿 ) ‘ 𝑖 ) ) |
| 37 | 36 | ralrimiva | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ‘ 𝑖 ) = ( ( 𝑆 repeatS 𝐿 ) ‘ 𝑖 ) ) |
| 38 | pfxcl | ⊢ ( ( 𝑆 repeatS 𝑁 ) ∈ Word 𝑉 → ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ∈ Word 𝑉 ) | |
| 39 | 2 38 | syl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ∈ Word 𝑉 ) |
| 40 | repsw | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑆 repeatS 𝐿 ) ∈ Word 𝑉 ) | |
| 41 | 9 40 | sylan2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 repeatS 𝐿 ) ∈ Word 𝑉 ) |
| 42 | eqwrd | ⊢ ( ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ∈ Word 𝑉 ∧ ( 𝑆 repeatS 𝐿 ) ∈ Word 𝑉 ) → ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) = ( 𝑆 repeatS 𝐿 ) ↔ ( ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) = ( ♯ ‘ ( 𝑆 repeatS 𝐿 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ‘ 𝑖 ) = ( ( 𝑆 repeatS 𝐿 ) ‘ 𝑖 ) ) ) ) | |
| 43 | 39 41 42 | 3imp3i2an | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) = ( 𝑆 repeatS 𝐿 ) ↔ ( ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) = ( ♯ ‘ ( 𝑆 repeatS 𝐿 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ) ) ( ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) ‘ 𝑖 ) = ( ( 𝑆 repeatS 𝐿 ) ‘ 𝑖 ) ) ) ) |
| 44 | 13 37 43 | mpbir2and | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) prefix 𝐿 ) = ( 𝑆 repeatS 𝐿 ) ) |