This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a cyclical shift for a word. (Contributed by Alexander van der Vekens, 20-May-2018) (Revised by AV, 12-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshword | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd | ⊢ ( 𝑊 ∈ Word 𝑉 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑉 ) | |
| 2 | ffn | ⊢ ( 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑉 → 𝑊 Fn ( 0 ..^ 𝑙 ) ) | |
| 3 | 2 | reximi | ⊢ ( ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑉 → ∃ 𝑙 ∈ ℕ0 𝑊 Fn ( 0 ..^ 𝑙 ) ) |
| 4 | 1 3 | sylbi | ⊢ ( 𝑊 ∈ Word 𝑉 → ∃ 𝑙 ∈ ℕ0 𝑊 Fn ( 0 ..^ 𝑙 ) ) |
| 5 | fneq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 Fn ( 0 ..^ 𝑙 ) ↔ 𝑊 Fn ( 0 ..^ 𝑙 ) ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑙 ∈ ℕ0 𝑤 Fn ( 0 ..^ 𝑙 ) ↔ ∃ 𝑙 ∈ ℕ0 𝑊 Fn ( 0 ..^ 𝑙 ) ) ) |
| 7 | 6 | elabg | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 Fn ( 0 ..^ 𝑙 ) } ↔ ∃ 𝑙 ∈ ℕ0 𝑊 Fn ( 0 ..^ 𝑙 ) ) ) |
| 8 | 4 7 | mpbird | ⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 ∈ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 Fn ( 0 ..^ 𝑙 ) } ) |
| 9 | cshfn | ⊢ ( ( 𝑊 ∈ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 Fn ( 0 ..^ 𝑙 ) } ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) | |
| 10 | 8 9 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 11 | iftrue | ⊢ ( 𝑊 = ∅ → if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ∅ ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 = ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ∅ ) |
| 13 | oveq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( ∅ substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) | |
| 14 | swrd0 | ⊢ ( ∅ substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) = ∅ ) |
| 16 | oveq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ∅ prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 17 | pfx0 | ⊢ ( ∅ prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ∅ | |
| 18 | 16 17 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ∅ ) |
| 19 | 15 18 | oveq12d | ⊢ ( 𝑊 = ∅ → ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ∅ ++ ∅ ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑊 = ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ∅ ++ ∅ ) ) |
| 21 | ccatidid | ⊢ ( ∅ ++ ∅ ) = ∅ | |
| 22 | 20 21 | eqtr2di | ⊢ ( ( 𝑊 = ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → ∅ = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 23 | 12 22 | eqtrd | ⊢ ( ( 𝑊 = ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 24 | iffalse | ⊢ ( ¬ 𝑊 = ∅ → if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) | |
| 25 | 24 | adantr | ⊢ ( ( ¬ 𝑊 = ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ) → if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 26 | 23 25 | pm2.61ian | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → if ( 𝑊 = ∅ , ∅ , ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 27 | 10 26 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |