This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018) (Proof shortened by AV, 16-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswcshw | |- ( ( S e. V /\ N e. NN0 /\ I e. ZZ ) -> ( ( S repeatS N ) cyclShift I ) = ( S repeatS N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0csh0 | |- ( (/) cyclShift I ) = (/) |
|
| 2 | repsw0 | |- ( S e. V -> ( S repeatS 0 ) = (/) ) |
|
| 3 | 2 | oveq1d | |- ( S e. V -> ( ( S repeatS 0 ) cyclShift I ) = ( (/) cyclShift I ) ) |
| 4 | 1 3 2 | 3eqtr4a | |- ( S e. V -> ( ( S repeatS 0 ) cyclShift I ) = ( S repeatS 0 ) ) |
| 5 | 4 | 3ad2ant1 | |- ( ( S e. V /\ N e. NN0 /\ I e. ZZ ) -> ( ( S repeatS 0 ) cyclShift I ) = ( S repeatS 0 ) ) |
| 6 | oveq2 | |- ( N = 0 -> ( S repeatS N ) = ( S repeatS 0 ) ) |
|
| 7 | 6 | oveq1d | |- ( N = 0 -> ( ( S repeatS N ) cyclShift I ) = ( ( S repeatS 0 ) cyclShift I ) ) |
| 8 | 7 6 | eqeq12d | |- ( N = 0 -> ( ( ( S repeatS N ) cyclShift I ) = ( S repeatS N ) <-> ( ( S repeatS 0 ) cyclShift I ) = ( S repeatS 0 ) ) ) |
| 9 | 5 8 | imbitrrid | |- ( N = 0 -> ( ( S e. V /\ N e. NN0 /\ I e. ZZ ) -> ( ( S repeatS N ) cyclShift I ) = ( S repeatS N ) ) ) |
| 10 | idd | |- ( -. N = 0 -> ( S e. V -> S e. V ) ) |
|
| 11 | df-ne | |- ( N =/= 0 <-> -. N = 0 ) |
|
| 12 | elnnne0 | |- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
|
| 13 | 12 | simplbi2com | |- ( N =/= 0 -> ( N e. NN0 -> N e. NN ) ) |
| 14 | 11 13 | sylbir | |- ( -. N = 0 -> ( N e. NN0 -> N e. NN ) ) |
| 15 | idd | |- ( -. N = 0 -> ( I e. ZZ -> I e. ZZ ) ) |
|
| 16 | 10 14 15 | 3anim123d | |- ( -. N = 0 -> ( ( S e. V /\ N e. NN0 /\ I e. ZZ ) -> ( S e. V /\ N e. NN /\ I e. ZZ ) ) ) |
| 17 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 18 | 17 | anim2i | |- ( ( S e. V /\ N e. NN ) -> ( S e. V /\ N e. NN0 ) ) |
| 19 | repsw | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) e. Word V ) |
|
| 20 | 18 19 | syl | |- ( ( S e. V /\ N e. NN ) -> ( S repeatS N ) e. Word V ) |
| 21 | cshword | |- ( ( ( S repeatS N ) e. Word V /\ I e. ZZ ) -> ( ( S repeatS N ) cyclShift I ) = ( ( ( S repeatS N ) substr <. ( I mod ( # ` ( S repeatS N ) ) ) , ( # ` ( S repeatS N ) ) >. ) ++ ( ( S repeatS N ) prefix ( I mod ( # ` ( S repeatS N ) ) ) ) ) ) |
|
| 22 | 20 21 | stoic3 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( S repeatS N ) cyclShift I ) = ( ( ( S repeatS N ) substr <. ( I mod ( # ` ( S repeatS N ) ) ) , ( # ` ( S repeatS N ) ) >. ) ++ ( ( S repeatS N ) prefix ( I mod ( # ` ( S repeatS N ) ) ) ) ) ) |
| 23 | repswlen | |- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = N ) |
|
| 24 | 18 23 | syl | |- ( ( S e. V /\ N e. NN ) -> ( # ` ( S repeatS N ) ) = N ) |
| 25 | 24 | oveq2d | |- ( ( S e. V /\ N e. NN ) -> ( I mod ( # ` ( S repeatS N ) ) ) = ( I mod N ) ) |
| 26 | 25 24 | opeq12d | |- ( ( S e. V /\ N e. NN ) -> <. ( I mod ( # ` ( S repeatS N ) ) ) , ( # ` ( S repeatS N ) ) >. = <. ( I mod N ) , N >. ) |
| 27 | 26 | oveq2d | |- ( ( S e. V /\ N e. NN ) -> ( ( S repeatS N ) substr <. ( I mod ( # ` ( S repeatS N ) ) ) , ( # ` ( S repeatS N ) ) >. ) = ( ( S repeatS N ) substr <. ( I mod N ) , N >. ) ) |
| 28 | 25 | oveq2d | |- ( ( S e. V /\ N e. NN ) -> ( ( S repeatS N ) prefix ( I mod ( # ` ( S repeatS N ) ) ) ) = ( ( S repeatS N ) prefix ( I mod N ) ) ) |
| 29 | 27 28 | oveq12d | |- ( ( S e. V /\ N e. NN ) -> ( ( ( S repeatS N ) substr <. ( I mod ( # ` ( S repeatS N ) ) ) , ( # ` ( S repeatS N ) ) >. ) ++ ( ( S repeatS N ) prefix ( I mod ( # ` ( S repeatS N ) ) ) ) ) = ( ( ( S repeatS N ) substr <. ( I mod N ) , N >. ) ++ ( ( S repeatS N ) prefix ( I mod N ) ) ) ) |
| 30 | 29 | 3adant3 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( ( S repeatS N ) substr <. ( I mod ( # ` ( S repeatS N ) ) ) , ( # ` ( S repeatS N ) ) >. ) ++ ( ( S repeatS N ) prefix ( I mod ( # ` ( S repeatS N ) ) ) ) ) = ( ( ( S repeatS N ) substr <. ( I mod N ) , N >. ) ++ ( ( S repeatS N ) prefix ( I mod N ) ) ) ) |
| 31 | 18 | 3adant3 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( S e. V /\ N e. NN0 ) ) |
| 32 | zmodcl | |- ( ( I e. ZZ /\ N e. NN ) -> ( I mod N ) e. NN0 ) |
|
| 33 | 32 | ancoms | |- ( ( N e. NN /\ I e. ZZ ) -> ( I mod N ) e. NN0 ) |
| 34 | 17 | adantr | |- ( ( N e. NN /\ I e. ZZ ) -> N e. NN0 ) |
| 35 | 33 34 | jca | |- ( ( N e. NN /\ I e. ZZ ) -> ( ( I mod N ) e. NN0 /\ N e. NN0 ) ) |
| 36 | 35 | 3adant1 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( I mod N ) e. NN0 /\ N e. NN0 ) ) |
| 37 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 38 | 37 | leidd | |- ( N e. NN -> N <_ N ) |
| 39 | 38 | 3ad2ant2 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> N <_ N ) |
| 40 | repswswrd | |- ( ( ( S e. V /\ N e. NN0 ) /\ ( ( I mod N ) e. NN0 /\ N e. NN0 ) /\ N <_ N ) -> ( ( S repeatS N ) substr <. ( I mod N ) , N >. ) = ( S repeatS ( N - ( I mod N ) ) ) ) |
|
| 41 | 31 36 39 40 | syl3anc | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( S repeatS N ) substr <. ( I mod N ) , N >. ) = ( S repeatS ( N - ( I mod N ) ) ) ) |
| 42 | simp1 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> S e. V ) |
|
| 43 | 17 | 3ad2ant2 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> N e. NN0 ) |
| 44 | zmodfzp1 | |- ( ( I e. ZZ /\ N e. NN ) -> ( I mod N ) e. ( 0 ... N ) ) |
|
| 45 | 44 | ancoms | |- ( ( N e. NN /\ I e. ZZ ) -> ( I mod N ) e. ( 0 ... N ) ) |
| 46 | 45 | 3adant1 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( I mod N ) e. ( 0 ... N ) ) |
| 47 | repswpfx | |- ( ( S e. V /\ N e. NN0 /\ ( I mod N ) e. ( 0 ... N ) ) -> ( ( S repeatS N ) prefix ( I mod N ) ) = ( S repeatS ( I mod N ) ) ) |
|
| 48 | 42 43 46 47 | syl3anc | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( S repeatS N ) prefix ( I mod N ) ) = ( S repeatS ( I mod N ) ) ) |
| 49 | 41 48 | oveq12d | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( ( S repeatS N ) substr <. ( I mod N ) , N >. ) ++ ( ( S repeatS N ) prefix ( I mod N ) ) ) = ( ( S repeatS ( N - ( I mod N ) ) ) ++ ( S repeatS ( I mod N ) ) ) ) |
| 50 | 32 | nn0red | |- ( ( I e. ZZ /\ N e. NN ) -> ( I mod N ) e. RR ) |
| 51 | 50 | ancoms | |- ( ( N e. NN /\ I e. ZZ ) -> ( I mod N ) e. RR ) |
| 52 | 37 | adantr | |- ( ( N e. NN /\ I e. ZZ ) -> N e. RR ) |
| 53 | zre | |- ( I e. ZZ -> I e. RR ) |
|
| 54 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 55 | modlt | |- ( ( I e. RR /\ N e. RR+ ) -> ( I mod N ) < N ) |
|
| 56 | 53 54 55 | syl2anr | |- ( ( N e. NN /\ I e. ZZ ) -> ( I mod N ) < N ) |
| 57 | 51 52 56 | ltled | |- ( ( N e. NN /\ I e. ZZ ) -> ( I mod N ) <_ N ) |
| 58 | 57 | 3adant1 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( I mod N ) <_ N ) |
| 59 | 33 | 3adant1 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( I mod N ) e. NN0 ) |
| 60 | nn0sub | |- ( ( ( I mod N ) e. NN0 /\ N e. NN0 ) -> ( ( I mod N ) <_ N <-> ( N - ( I mod N ) ) e. NN0 ) ) |
|
| 61 | 59 43 60 | syl2anc | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( I mod N ) <_ N <-> ( N - ( I mod N ) ) e. NN0 ) ) |
| 62 | 58 61 | mpbid | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( N - ( I mod N ) ) e. NN0 ) |
| 63 | repswccat | |- ( ( S e. V /\ ( N - ( I mod N ) ) e. NN0 /\ ( I mod N ) e. NN0 ) -> ( ( S repeatS ( N - ( I mod N ) ) ) ++ ( S repeatS ( I mod N ) ) ) = ( S repeatS ( ( N - ( I mod N ) ) + ( I mod N ) ) ) ) |
|
| 64 | 42 62 59 63 | syl3anc | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( S repeatS ( N - ( I mod N ) ) ) ++ ( S repeatS ( I mod N ) ) ) = ( S repeatS ( ( N - ( I mod N ) ) + ( I mod N ) ) ) ) |
| 65 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 66 | 65 | adantl | |- ( ( I e. ZZ /\ N e. NN ) -> N e. CC ) |
| 67 | 32 | nn0cnd | |- ( ( I e. ZZ /\ N e. NN ) -> ( I mod N ) e. CC ) |
| 68 | 66 67 | npcand | |- ( ( I e. ZZ /\ N e. NN ) -> ( ( N - ( I mod N ) ) + ( I mod N ) ) = N ) |
| 69 | 68 | ancoms | |- ( ( N e. NN /\ I e. ZZ ) -> ( ( N - ( I mod N ) ) + ( I mod N ) ) = N ) |
| 70 | 69 | 3adant1 | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( N - ( I mod N ) ) + ( I mod N ) ) = N ) |
| 71 | 70 | oveq2d | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( S repeatS ( ( N - ( I mod N ) ) + ( I mod N ) ) ) = ( S repeatS N ) ) |
| 72 | 49 64 71 | 3eqtrd | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( ( S repeatS N ) substr <. ( I mod N ) , N >. ) ++ ( ( S repeatS N ) prefix ( I mod N ) ) ) = ( S repeatS N ) ) |
| 73 | 22 30 72 | 3eqtrd | |- ( ( S e. V /\ N e. NN /\ I e. ZZ ) -> ( ( S repeatS N ) cyclShift I ) = ( S repeatS N ) ) |
| 74 | 16 73 | syl6 | |- ( -. N = 0 -> ( ( S e. V /\ N e. NN0 /\ I e. ZZ ) -> ( ( S repeatS N ) cyclShift I ) = ( S repeatS N ) ) ) |
| 75 | 9 74 | pm2.61i | |- ( ( S e. V /\ N e. NN0 /\ I e. ZZ ) -> ( ( S repeatS N ) cyclShift I ) = ( S repeatS N ) ) |