This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018) (Revised by AV, 4-Jun-2018) (Revised by AV, 31-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2cshw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cshwlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 3 | cshwcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) | |
| 4 | cshwlen | ⊢ ( ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) | |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
| 6 | 5 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑊 ∈ Word 𝑉 ) | |
| 8 | zaddcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) | |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 10 | cshwlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 12 | 2 6 11 | 3eqtr4d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ) |
| 13 | 6 2 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 15 | 14 | eleq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 16 | 3 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
| 18 | simpl3 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) | |
| 19 | 2 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 20 | 19 | eleq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 21 | 20 | biimpar | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) |
| 22 | cshwidxmod | ⊢ ( ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) ) | |
| 23 | 17 18 21 22 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) ) |
| 24 | simpl1 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 25 | simpl2 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑀 ∈ ℤ ) | |
| 26 | elfzo0 | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) ) | |
| 27 | nn0z | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℤ ) | |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
| 29 | simpr3 | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) | |
| 30 | 28 29 | zaddcld | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + 𝑁 ) ∈ ℤ ) |
| 31 | simplr | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 32 | 30 31 | jca | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 33 | 32 | ex | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 34 | 33 | 3adant3 | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 35 | 26 34 | sylbi | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 36 | 35 | impcom | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 37 | zmodfzo | ⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 39 | 1 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 40 | 39 | eleq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 41 | 40 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 43 | 38 42 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 44 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 45 | 24 25 43 44 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 46 | nn0re | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) | |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℝ ) |
| 48 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 49 | 48 | ad2antll | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℝ ) |
| 50 | 47 49 | readdcld | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + 𝑁 ) ∈ ℝ ) |
| 51 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 52 | 51 | ad2antrl | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℝ ) |
| 53 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 54 | 53 | ad2antlr | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 55 | modaddmod | ⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) | |
| 56 | 50 52 54 55 | syl3anc | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 57 | nn0cn | ⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℂ ) | |
| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℂ ) |
| 59 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 60 | 59 | ad2antrl | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℂ ) |
| 61 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 62 | 61 | ad2antll | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℂ ) |
| 63 | add32r | ⊢ ( ( 𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑖 + ( 𝑀 + 𝑁 ) ) = ( ( 𝑖 + 𝑁 ) + 𝑀 ) ) | |
| 64 | 58 60 62 63 | syl3anc | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + ( 𝑀 + 𝑁 ) ) = ( ( 𝑖 + 𝑁 ) + 𝑀 ) ) |
| 65 | 64 | oveq1d | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 66 | 56 65 | eqtr4d | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 67 | 66 | ex | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 68 | 67 | 3adant3 | ⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 69 | 26 68 | sylbi | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 70 | 69 | impcom | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 71 | 70 | 3adantl1 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 72 | 71 | fveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 73 | 2 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 74 | 73 | oveq2d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 75 | 74 | oveq1d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) = ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) ) |
| 76 | 75 | fvoveq1d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 77 | 9 | adantr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 78 | simpr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 79 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 80 | 24 77 78 79 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 81 | 72 76 80 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
| 82 | 23 45 81 | 3eqtrd | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
| 83 | 82 | ex | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) |
| 84 | 15 83 | sylbid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) |
| 85 | 84 | ralrimiv | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
| 86 | cshwcl | ⊢ ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ) | |
| 87 | 3 86 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ) |
| 88 | cshwcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ∈ Word 𝑉 ) | |
| 89 | eqwrd | ⊢ ( ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ∧ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ∈ Word 𝑉 ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) | |
| 90 | 87 88 89 | syl2anc | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
| 91 | 90 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
| 92 | 12 85 91 | mpbir2and | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) |