This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a "repeated symbol word". (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswlen | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | repsf | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 ) | |
| 2 | ffn | ⊢ ( ( 𝑆 repeatS 𝑁 ) : ( 0 ..^ 𝑁 ) ⟶ 𝑉 → ( 𝑆 repeatS 𝑁 ) Fn ( 0 ..^ 𝑁 ) ) | |
| 3 | hashfn | ⊢ ( ( 𝑆 repeatS 𝑁 ) Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
| 5 | hashfzo0 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 7 | 4 6 | eqtrd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |