This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswccat | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 repeatS 𝑁 ) ++ ( 𝑆 repeatS 𝑀 ) ) = ( 𝑆 repeatS ( 𝑁 + 𝑀 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | repswlen | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ) |
| 3 | repswlen | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) | |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) |
| 5 | 2 4 | oveq12d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) = ( 𝑁 + 𝑀 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) = ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝑆 ∈ 𝑉 ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → 𝑆 ∈ 𝑉 ) |
| 9 | simpl2 | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → 𝑁 ∈ ℕ0 ) | |
| 10 | 2 | oveq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) = ( 0 ..^ 𝑁 ) ) |
| 11 | 10 | eleq2d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ↔ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 12 | 11 | biimpa | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → 𝑥 ∈ ( 0 ..^ 𝑁 ) ) |
| 13 | 8 9 12 | 3jca | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 14 | 13 | adantlr | ⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 15 | repswsymb | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) = 𝑆 ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ) ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) = 𝑆 ) |
| 17 | 7 | ad2antrr | ⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → 𝑆 ∈ 𝑉 ) |
| 18 | simpll3 | ⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → 𝑀 ∈ ℕ0 ) | |
| 19 | 2 4 | jca | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) ) |
| 20 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) → 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) | |
| 21 | 20 | anim1i | ⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 22 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 23 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 24 | 22 23 | anim12i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
| 26 | fzocatel | ⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) | |
| 27 | 21 25 26 | syl2anc | ⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 28 | 27 | exp31 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) → ( ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 29 | 28 | 3adant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) → ( ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 30 | oveq12 | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) = ( 𝑁 + 𝑀 ) ) | |
| 31 | 30 | oveq2d | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) = ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) |
| 32 | 31 | eleq2d | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ↔ 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ) ) |
| 33 | oveq2 | ⊢ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 → ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) = ( 0 ..^ 𝑁 ) ) | |
| 34 | 33 | eleq2d | ⊢ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ↔ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 35 | 34 | notbid | ⊢ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 → ( ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ↔ ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ↔ ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 37 | oveq2 | ⊢ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 → ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) = ( 𝑥 − 𝑁 ) ) | |
| 38 | 37 | eleq1d | ⊢ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 → ( ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) ) |
| 40 | 36 39 | imbi12d | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( ( ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ) ↔ ( ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 41 | 32 40 | imbi12d | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) → ( ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ) ) ↔ ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) → ( ¬ 𝑥 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 − 𝑁 ) ∈ ( 0 ..^ 𝑀 ) ) ) ) ) |
| 42 | 29 41 | imbitrrid | ⊢ ( ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) = 𝑁 ∧ ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) = 𝑀 ) → ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) → ( ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ) ) ) ) |
| 43 | 19 42 | mpcom | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) → ( ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ) ) ) |
| 44 | 43 | imp31 | ⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ) |
| 45 | repswsymb | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ ℕ0 ∧ ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 repeatS 𝑀 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) = 𝑆 ) | |
| 46 | 17 18 44 45 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) → ( ( 𝑆 repeatS 𝑀 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) = 𝑆 ) |
| 47 | 16 46 | ifeqda | ⊢ ( ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ) → if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) , ( ( 𝑆 repeatS 𝑀 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) = 𝑆 ) |
| 48 | 6 47 | mpteq12dva | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) , ( ( 𝑆 repeatS 𝑀 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ↦ 𝑆 ) ) |
| 49 | ovex | ⊢ ( 𝑆 repeatS 𝑁 ) ∈ V | |
| 50 | ovex | ⊢ ( 𝑆 repeatS 𝑀 ) ∈ V | |
| 51 | 49 50 | pm3.2i | ⊢ ( ( 𝑆 repeatS 𝑁 ) ∈ V ∧ ( 𝑆 repeatS 𝑀 ) ∈ V ) |
| 52 | ccatfval | ⊢ ( ( ( 𝑆 repeatS 𝑁 ) ∈ V ∧ ( 𝑆 repeatS 𝑀 ) ∈ V ) → ( ( 𝑆 repeatS 𝑁 ) ++ ( 𝑆 repeatS 𝑀 ) ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) , ( ( 𝑆 repeatS 𝑀 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) ) ) | |
| 53 | 51 52 | mp1i | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 repeatS 𝑁 ) ++ ( 𝑆 repeatS 𝑀 ) ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) + ( ♯ ‘ ( 𝑆 repeatS 𝑀 ) ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) , ( ( 𝑆 repeatS 𝑁 ) ‘ 𝑥 ) , ( ( 𝑆 repeatS 𝑀 ) ‘ ( 𝑥 − ( ♯ ‘ ( 𝑆 repeatS 𝑁 ) ) ) ) ) ) ) |
| 54 | nn0addcl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 ) | |
| 55 | 54 | 3adant1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑁 + 𝑀 ) ∈ ℕ0 ) |
| 56 | reps | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑁 + 𝑀 ) ∈ ℕ0 ) → ( 𝑆 repeatS ( 𝑁 + 𝑀 ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ↦ 𝑆 ) ) | |
| 57 | 7 55 56 | syl2anc | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑆 repeatS ( 𝑁 + 𝑀 ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑁 + 𝑀 ) ) ↦ 𝑆 ) ) |
| 58 | 48 53 57 | 3eqtr4d | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑆 repeatS 𝑁 ) ++ ( 𝑆 repeatS 𝑀 ) ) = ( 𝑆 repeatS ( 𝑁 + 𝑀 ) ) ) |