This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007) (Revised by Mario Carneiro, 10-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reeff1 | ⊢ ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 2 | ffn | ⊢ ( exp : ℂ ⟶ ℂ → exp Fn ℂ ) | |
| 3 | 1 2 | ax-mp | ⊢ exp Fn ℂ |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | fnssres | ⊢ ( ( exp Fn ℂ ∧ ℝ ⊆ ℂ ) → ( exp ↾ ℝ ) Fn ℝ ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( exp ↾ ℝ ) Fn ℝ |
| 7 | fvres | ⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) | |
| 8 | rpefcl | ⊢ ( 𝑥 ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ+ ) | |
| 9 | 7 8 | eqeltrd | ⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ+ ) |
| 10 | 9 | rgen | ⊢ ∀ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ+ |
| 11 | ffnfv | ⊢ ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ↔ ( ( exp ↾ ℝ ) Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ+ ) ) | |
| 12 | 6 10 11 | mpbir2an | ⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ |
| 13 | fvres | ⊢ ( 𝑦 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑦 ) = ( exp ‘ 𝑦 ) ) | |
| 14 | 7 13 | eqeqan12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) ↔ ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) ) |
| 15 | reef11 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 16 | 15 | biimpd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 17 | 14 16 | sylbid | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 18 | 17 | rgen2 | ⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 19 | dff13 | ⊢ ( ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ ↔ ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 20 | 12 18 19 | mpbir2an | ⊢ ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ |