This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mutual reciprocals. (Contributed by Paul Chapman, 18-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rec11r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = 𝐵 ↔ ( 1 / 𝐵 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 1 ∈ ℂ ) | |
| 2 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℂ ) | |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) | |
| 5 | divmul2 | ⊢ ( ( 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = 𝐵 ↔ 1 = ( 𝐴 · 𝐵 ) ) ) | |
| 6 | 1 2 3 4 5 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = 𝐵 ↔ 1 = ( 𝐴 · 𝐵 ) ) ) |
| 7 | simprr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 8 | divmul3 | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐵 ) = 𝐴 ↔ 1 = ( 𝐴 · 𝐵 ) ) ) | |
| 9 | 1 3 2 7 8 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐵 ) = 𝐴 ↔ 1 = ( 𝐴 · 𝐵 ) ) ) |
| 10 | 6 9 | bitr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) = 𝐵 ↔ ( 1 / 𝐵 ) = 𝐴 ) ) |