This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 29-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | redwlk | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 4 | 2 3 | iswlk | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 5 | wrdred1 | ⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) ) |
| 7 | 3 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 8 | redwlklem | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) | |
| 9 | 8 | 3exp | ⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 12 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 13 | wrdred1hash | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) | |
| 14 | 7 13 | sylan | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
| 15 | nn0z | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 16 | fzossrbm1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 18 | ssralv | ⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 20 | 17 | sselda | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 21 | 20 | fvresd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑃 ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ) |
| 23 | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 24 | simpr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 25 | 15 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 26 | 1zzd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 1 ∈ ℤ ) | |
| 27 | fzoaddel2 | ⊢ ( ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑘 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 29 | 23 28 | sselid | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 30 | 29 | fvresd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 31 | 30 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 32 | 22 31 | eqeq12d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 33 | fvres | ⊢ ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 34 | 33 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 35 | 34 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) |
| 36 | 35 | fveq2d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) |
| 37 | 22 | sneqd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → { ( 𝑃 ‘ 𝑘 ) } = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ) |
| 38 | 36 37 | eqeq12d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ) ) |
| 39 | 22 31 | preq12d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ) |
| 40 | 39 36 | sseq12d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) |
| 41 | 32 38 40 | ifpbi123d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 42 | 41 | biimpd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 43 | 42 | ralimdva | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 44 | 19 43 | syld | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 46 | oveq2 | ⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) | |
| 47 | 46 | eqcomd | ⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ) |
| 48 | 47 | raleqdv | ⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 49 | 48 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 50 | 45 49 | sylibd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 51 | 12 14 50 | syl2an2r | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 52 | 6 11 51 | 3anim123d | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 53 | 52 | imp | ⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 54 | id | ⊢ ( 𝐺 ∈ V → 𝐺 ∈ V ) | |
| 55 | resexg | ⊢ ( 𝐹 ∈ V → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ V ) | |
| 56 | resexg | ⊢ ( 𝑃 ∈ V → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∈ V ) | |
| 57 | 2 3 | iswlk | ⊢ ( ( 𝐺 ∈ V ∧ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ V ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∈ V ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 58 | 57 | bicomd | ⊢ ( ( 𝐺 ∈ V ∧ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ V ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∈ V ) → ( ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ↔ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 59 | 54 55 56 58 | syl3an | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ↔ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 60 | 53 59 | imbitrid | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 61 | 60 | expcomd | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 62 | 4 61 | sylbid | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 63 | 1 62 | mpcom | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 64 | 63 | anabsi5 | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |