This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 29-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdred1hash | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 2 | wrdf | ⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) | |
| 3 | ffn | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 4 | nn0z | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 5 | fzossrbm1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 9 | fnssresb | ⊢ ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 11 | 8 10 | mpbird | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 12 | hashfn | ⊢ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) Fn ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
| 14 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 15 | nn0sub2 | ⊢ ( ( 1 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) | |
| 16 | 14 15 | mp3an1 | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) |
| 17 | hashfzo0 | ⊢ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
| 20 | 13 19 | eqtrd | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
| 21 | 20 | ex | ⊢ ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 22 | 2 3 21 | 3syl | ⊢ ( 𝐹 ∈ Word 𝑆 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 23 | 1 22 | mpand | ⊢ ( 𝐹 ∈ Word 𝑆 → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |