This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word truncated by a symbol is a word. (Contributed by AV, 29-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wrdred1 | ⊢ ( 𝐹 ∈ Word 𝑆 → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdf | ⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) | |
| 2 | lencl | ⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 3 | nn0z | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) | |
| 4 | fzossrbm1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 6 | fssres | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ∧ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑆 ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑆 ) |
| 8 | iswrdi | ⊢ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) : ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⟶ 𝑆 → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word 𝑆 ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word 𝑆 ) |
| 10 | 1 2 9 | syl2anc | ⊢ ( 𝐹 ∈ Word 𝑆 → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word 𝑆 ) |