This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate membership in a shifted-down half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoaddel2 | ⊢ ( ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 𝐶 ) ) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 + 𝐶 ) ∈ ( 𝐶 ..^ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoaddel | ⊢ ( ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 𝐶 ) ) ∧ 𝐶 ∈ ℤ ) → ( 𝐴 + 𝐶 ) ∈ ( ( 0 + 𝐶 ) ..^ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 𝐶 ) ) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 + 𝐶 ) ∈ ( ( 0 + 𝐶 ) ..^ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) |
| 3 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 4 | zcn | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) | |
| 5 | addlid | ⊢ ( 𝐶 ∈ ℂ → ( 0 + 𝐶 ) = 𝐶 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 0 + 𝐶 ) = 𝐶 ) |
| 7 | npcan | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) | |
| 8 | 6 7 | oveq12d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 0 + 𝐶 ) ..^ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) = ( 𝐶 ..^ 𝐵 ) ) |
| 9 | 3 4 8 | syl2an | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 0 + 𝐶 ) ..^ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) = ( 𝐶 ..^ 𝐵 ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 𝐶 ) ) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 0 + 𝐶 ) ..^ ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) = ( 𝐶 ..^ 𝐵 ) ) |
| 11 | 2 10 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( 0 ..^ ( 𝐵 − 𝐶 ) ) ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 + 𝐶 ) ∈ ( 𝐶 ..^ 𝐵 ) ) |