This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recosf1o | |- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosf | |- cos : CC --> CC |
|
| 2 | ffn | |- ( cos : CC --> CC -> cos Fn CC ) |
|
| 3 | 1 2 | ax-mp | |- cos Fn CC |
| 4 | 0re | |- 0 e. RR |
|
| 5 | pire | |- _pi e. RR |
|
| 6 | iccssre | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
|
| 7 | 4 5 6 | mp2an | |- ( 0 [,] _pi ) C_ RR |
| 8 | ax-resscn | |- RR C_ CC |
|
| 9 | 7 8 | sstri | |- ( 0 [,] _pi ) C_ CC |
| 10 | fnssres | |- ( ( cos Fn CC /\ ( 0 [,] _pi ) C_ CC ) -> ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) ) |
|
| 11 | 3 9 10 | mp2an | |- ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) |
| 12 | fvres | |- ( x e. ( 0 [,] _pi ) -> ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( cos ` x ) ) |
|
| 13 | 7 | sseli | |- ( x e. ( 0 [,] _pi ) -> x e. RR ) |
| 14 | cosbnd2 | |- ( x e. RR -> ( cos ` x ) e. ( -u 1 [,] 1 ) ) |
|
| 15 | 13 14 | syl | |- ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. ( -u 1 [,] 1 ) ) |
| 16 | 12 15 | eqeltrd | |- ( x e. ( 0 [,] _pi ) -> ( ( cos |` ( 0 [,] _pi ) ) ` x ) e. ( -u 1 [,] 1 ) ) |
| 17 | 16 | rgen | |- A. x e. ( 0 [,] _pi ) ( ( cos |` ( 0 [,] _pi ) ) ` x ) e. ( -u 1 [,] 1 ) |
| 18 | ffnfv | |- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) /\ A. x e. ( 0 [,] _pi ) ( ( cos |` ( 0 [,] _pi ) ) ` x ) e. ( -u 1 [,] 1 ) ) ) |
|
| 19 | 11 17 18 | mpbir2an | |- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) |
| 20 | fvres | |- ( y e. ( 0 [,] _pi ) -> ( ( cos |` ( 0 [,] _pi ) ) ` y ) = ( cos ` y ) ) |
|
| 21 | 12 20 | eqeqan12d | |- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> ( cos ` x ) = ( cos ` y ) ) ) |
| 22 | cos11 | |- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( x = y <-> ( cos ` x ) = ( cos ` y ) ) ) |
|
| 23 | 22 | biimprd | |- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( ( cos ` x ) = ( cos ` y ) -> x = y ) ) |
| 24 | 21 23 | sylbid | |- ( ( x e. ( 0 [,] _pi ) /\ y e. ( 0 [,] _pi ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) -> x = y ) ) |
| 25 | 24 | rgen2 | |- A. x e. ( 0 [,] _pi ) A. y e. ( 0 [,] _pi ) ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) -> x = y ) |
| 26 | dff13 | |- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) /\ A. x e. ( 0 [,] _pi ) A. y e. ( 0 [,] _pi ) ( ( ( cos |` ( 0 [,] _pi ) ) ` x ) = ( ( cos |` ( 0 [,] _pi ) ) ` y ) -> x = y ) ) ) |
|
| 27 | 19 25 26 | mpbir2an | |- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-> ( -u 1 [,] 1 ) |
| 28 | 4 | a1i | |- ( x e. ( -u 1 [,] 1 ) -> 0 e. RR ) |
| 29 | 5 | a1i | |- ( x e. ( -u 1 [,] 1 ) -> _pi e. RR ) |
| 30 | neg1rr | |- -u 1 e. RR |
|
| 31 | 1re | |- 1 e. RR |
|
| 32 | 30 31 | elicc2i | |- ( x e. ( -u 1 [,] 1 ) <-> ( x e. RR /\ -u 1 <_ x /\ x <_ 1 ) ) |
| 33 | 32 | simp1bi | |- ( x e. ( -u 1 [,] 1 ) -> x e. RR ) |
| 34 | pipos | |- 0 < _pi |
|
| 35 | 34 | a1i | |- ( x e. ( -u 1 [,] 1 ) -> 0 < _pi ) |
| 36 | 9 | a1i | |- ( x e. ( -u 1 [,] 1 ) -> ( 0 [,] _pi ) C_ CC ) |
| 37 | coscn | |- cos e. ( CC -cn-> CC ) |
|
| 38 | 37 | a1i | |- ( x e. ( -u 1 [,] 1 ) -> cos e. ( CC -cn-> CC ) ) |
| 39 | 7 | sseli | |- ( z e. ( 0 [,] _pi ) -> z e. RR ) |
| 40 | 39 | recoscld | |- ( z e. ( 0 [,] _pi ) -> ( cos ` z ) e. RR ) |
| 41 | 40 | adantl | |- ( ( x e. ( -u 1 [,] 1 ) /\ z e. ( 0 [,] _pi ) ) -> ( cos ` z ) e. RR ) |
| 42 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 43 | 32 | simp2bi | |- ( x e. ( -u 1 [,] 1 ) -> -u 1 <_ x ) |
| 44 | 42 43 | eqbrtrid | |- ( x e. ( -u 1 [,] 1 ) -> ( cos ` _pi ) <_ x ) |
| 45 | 32 | simp3bi | |- ( x e. ( -u 1 [,] 1 ) -> x <_ 1 ) |
| 46 | cos0 | |- ( cos ` 0 ) = 1 |
|
| 47 | 45 46 | breqtrrdi | |- ( x e. ( -u 1 [,] 1 ) -> x <_ ( cos ` 0 ) ) |
| 48 | 44 47 | jca | |- ( x e. ( -u 1 [,] 1 ) -> ( ( cos ` _pi ) <_ x /\ x <_ ( cos ` 0 ) ) ) |
| 49 | 28 29 33 35 36 38 41 48 | ivthle2 | |- ( x e. ( -u 1 [,] 1 ) -> E. y e. ( 0 [,] _pi ) ( cos ` y ) = x ) |
| 50 | eqcom | |- ( x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> ( ( cos |` ( 0 [,] _pi ) ) ` y ) = x ) |
|
| 51 | 20 | eqeq1d | |- ( y e. ( 0 [,] _pi ) -> ( ( ( cos |` ( 0 [,] _pi ) ) ` y ) = x <-> ( cos ` y ) = x ) ) |
| 52 | 50 51 | bitrid | |- ( y e. ( 0 [,] _pi ) -> ( x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> ( cos ` y ) = x ) ) |
| 53 | 52 | rexbiia | |- ( E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) <-> E. y e. ( 0 [,] _pi ) ( cos ` y ) = x ) |
| 54 | 49 53 | sylibr | |- ( x e. ( -u 1 [,] 1 ) -> E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) ) |
| 55 | 54 | rgen | |- A. x e. ( -u 1 [,] 1 ) E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) |
| 56 | dffo3 | |- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -onto-> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) --> ( -u 1 [,] 1 ) /\ A. x e. ( -u 1 [,] 1 ) E. y e. ( 0 [,] _pi ) x = ( ( cos |` ( 0 [,] _pi ) ) ` y ) ) ) |
|
| 57 | 19 55 56 | mpbir2an | |- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -onto-> ( -u 1 [,] 1 ) |
| 58 | df-f1o | |- ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) <-> ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-> ( -u 1 [,] 1 ) /\ ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -onto-> ( -u 1 [,] 1 ) ) ) |
|
| 59 | 27 57 58 | mpbir2an | |- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) |