This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringinvdv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringinvdv.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| ringinvdv.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| ringinvdv.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ringinvdv.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| Assertion | ringinvdv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvdv.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringinvdv.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | ringinvdv.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 4 | ringinvdv.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | ringinvdv.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 6 | 1 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | 1 7 2 5 3 | dvrval | ⊢ ( ( 1 ∈ 𝐵 ∧ 𝑋 ∈ 𝑈 ) → ( 1 / 𝑋 ) = ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 9 | 6 8 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 1 / 𝑋 ) = ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 10 | 2 5 1 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 | 1 7 4 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 12 | 10 11 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 13 | 9 12 | eqtr2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |