This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a Cartesian product is a limit ordinal iff its union is. (Contributed by NM, 19-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxplim.1 | ⊢ 𝐴 ∈ V | |
| rankxplim.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | rankxplim3 | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxplim.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankxplim.2 | ⊢ 𝐵 ∈ V | |
| 3 | limuni2 | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 4 | 0ellim | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ∅ ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 5 | n0i | ⊢ ( ∅ ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ¬ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) | |
| 6 | unieq | ⊢ ( ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∪ ∅ ) | |
| 7 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 8 | 6 7 | eqtrdi | ⊢ ( ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 9 | 8 | con3i | ⊢ ( ¬ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 10 | 4 5 9 | 3syl | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 11 | rankon | ⊢ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On | |
| 12 | 11 | onsuci | ⊢ suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
| 13 | 12 | onsuci | ⊢ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
| 14 | 13 | elexi | ⊢ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ V |
| 15 | 14 | sucid | ⊢ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 16 | 13 | onsuci | ⊢ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On |
| 17 | ontri1 | ⊢ ( ( suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On ∧ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ On ) → ( suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ¬ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 18 | 16 13 17 | mp2an | ⊢ ( suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ¬ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 19 | 18 | con2bii | ⊢ ( suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ¬ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 20 | 15 19 | mpbi | ⊢ ¬ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 21 | 1 2 | rankxpu | ⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 22 | sstr | ⊢ ( ( suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) → suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 23 | 21 22 | mpan2 | ⊢ ( suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) → suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 24 | 20 23 | mto | ⊢ ¬ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 25 | reeanv | ⊢ ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ On ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ↔ ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) | |
| 26 | simprl | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ) | |
| 27 | simpr | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ) | |
| 28 | df-ne | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ¬ ( 𝐴 × 𝐵 ) = ∅ ) | |
| 29 | 1 2 | xpex | ⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 30 | 29 | rankeq0 | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 31 | 30 | notbii | ⊢ ( ¬ ( 𝐴 × 𝐵 ) = ∅ ↔ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 32 | 28 31 | bitr2i | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 33 | 10 32 | sylib | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 34 | unixp | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ∪ ∪ ( 𝐴 × 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 35 | 33 34 | syl | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ∪ ∪ ( 𝐴 × 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 36 | 35 | fveq2d | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 37 | rankuni | ⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) | |
| 38 | rankuni | ⊢ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) | |
| 39 | 38 | unieqi | ⊢ ∪ ( rank ‘ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 40 | 37 39 | eqtri | ⊢ ( rank ‘ ∪ ∪ ( 𝐴 × 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 41 | 36 40 | eqtr3di | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 42 | eqimss | ⊢ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 43 | 41 42 | syl | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 45 | 27 44 | eqsstrrd | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ) → suc 𝑥 ⊆ ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 46 | 45 | adantrr | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc 𝑥 ⊆ ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 47 | limuni | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 48 | 47 | adantr | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∪ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 49 | 46 48 | sseqtrrd | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc 𝑥 ⊆ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 50 | vex | ⊢ 𝑥 ∈ V | |
| 51 | rankon | ⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∈ On | |
| 52 | 51 | onordi | ⊢ Ord ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 53 | orduni | ⊢ ( Ord ( rank ‘ ( 𝐴 × 𝐵 ) ) → Ord ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 54 | 52 53 | ax-mp | ⊢ Ord ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) |
| 55 | ordelsuc | ⊢ ( ( 𝑥 ∈ V ∧ Ord ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) → ( 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc 𝑥 ⊆ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) | |
| 56 | 50 54 55 | mp2an | ⊢ ( 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc 𝑥 ⊆ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 57 | 49 56 | sylibr | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 58 | limsuc | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) | |
| 59 | 58 | adantr | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → ( 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 60 | 57 59 | mpbid | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc 𝑥 ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 61 | 26 60 | eqeltrd | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 62 | limsuc | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) | |
| 63 | 62 | adantr | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 64 | 61 63 | mpbid | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 65 | ordsucelsuc | ⊢ ( Ord ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ suc ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) | |
| 66 | 54 65 | ax-mp | ⊢ ( suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ suc ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 67 | 64 66 | sylib | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ suc ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 68 | onsucuni2 | ⊢ ( ( ( rank ‘ ( 𝐴 × 𝐵 ) ) ∈ On ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → suc ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 × 𝐵 ) ) ) | |
| 69 | 51 68 | mpan | ⊢ ( ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 → suc ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 70 | 69 | ad2antll | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 71 | 67 70 | eleqtrd | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 72 | 13 51 | onsucssi | ⊢ ( suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 73 | 71 72 | sylib | ⊢ ( ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ∧ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 74 | 73 | ex | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 75 | 74 | a1d | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) ) |
| 76 | 75 | rexlimdvv | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( ∃ 𝑥 ∈ On ∃ 𝑦 ∈ On ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 77 | 25 76 | biimtrrid | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ( ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → suc suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 78 | 24 77 | mtoi | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → ¬ ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) |
| 79 | ianor | ⊢ ( ¬ ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ↔ ( ¬ ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∨ ¬ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) | |
| 80 | un00 | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ↔ ( 𝐴 ∪ 𝐵 ) = ∅ ) | |
| 81 | animorl | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) | |
| 82 | 80 81 | sylbir | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) |
| 83 | xpeq0 | ⊢ ( ( 𝐴 × 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∨ 𝐵 = ∅ ) ) | |
| 84 | 82 83 | sylibr | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
| 85 | 84 | con3i | ⊢ ( ¬ ( 𝐴 × 𝐵 ) = ∅ → ¬ ( 𝐴 ∪ 𝐵 ) = ∅ ) |
| 86 | 31 85 | sylbir | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ¬ ( 𝐴 ∪ 𝐵 ) = ∅ ) |
| 87 | 1 2 | unex | ⊢ ( 𝐴 ∪ 𝐵 ) ∈ V |
| 88 | 87 | rankeq0 | ⊢ ( ( 𝐴 ∪ 𝐵 ) = ∅ ↔ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∅ ) |
| 89 | 88 | notbii | ⊢ ( ¬ ( 𝐴 ∪ 𝐵 ) = ∅ ↔ ¬ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∅ ) |
| 90 | 86 89 | sylib | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ¬ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∅ ) |
| 91 | 11 | onordi | ⊢ Ord ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 92 | ordzsl | ⊢ ( Ord ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∨ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 93 | 91 92 | mpbi | ⊢ ( ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∨ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 94 | 93 | 3ori | ⊢ ( ( ¬ ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = ∅ ∧ ¬ ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 95 | 90 94 | sylan | ⊢ ( ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ∧ ¬ ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 96 | 95 | ex | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ( ¬ ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 97 | ordzsl | ⊢ ( Ord ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ ( ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ∨ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ∨ Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) | |
| 98 | 52 97 | mpbi | ⊢ ( ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ∨ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ∨ Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 99 | 98 | 3ori | ⊢ ( ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ∧ ¬ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 100 | 99 | ex | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ( ¬ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 101 | 96 100 | orim12d | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ( ( ¬ ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∨ ¬ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) ) |
| 102 | 79 101 | biimtrid | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ( ¬ ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) → ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) ) |
| 103 | 102 | imp | ⊢ ( ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ∧ ¬ ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 104 | simpl | ⊢ ( ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∧ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) → Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 105 | 30 | necon3abii | ⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 106 | 1 2 | rankxplim | ⊢ ( ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) → ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 107 | 105 106 | sylan2br | ⊢ ( ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∧ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) → ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 108 | limeq | ⊢ ( ( rank ‘ ( 𝐴 × 𝐵 ) ) = ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 109 | 107 108 | syl | ⊢ ( ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∧ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) → ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 110 | 104 109 | mpbird | ⊢ ( ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∧ ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 111 | 110 | expcom | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 112 | idd | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) | |
| 113 | 111 112 | jaod | ⊢ ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ → ( ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 114 | 113 | adantr | ⊢ ( ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ∧ ¬ ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → ( ( Lim ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ∨ Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) ) |
| 115 | 103 114 | mpd | ⊢ ( ( ¬ ( rank ‘ ( 𝐴 × 𝐵 ) ) = ∅ ∧ ¬ ( ∃ 𝑥 ∈ On ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) = suc 𝑥 ∧ ∃ 𝑦 ∈ On ( rank ‘ ( 𝐴 × 𝐵 ) ) = suc 𝑦 ) ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 116 | 10 78 115 | syl2anc | ⊢ ( Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) → Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |
| 117 | 3 116 | impbii | ⊢ ( Lim ( rank ‘ ( 𝐴 × 𝐵 ) ) ↔ Lim ∪ ( rank ‘ ( 𝐴 × 𝐵 ) ) ) |