This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxpl.1 | ⊢ 𝐴 ∈ V | |
| rankxpl.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | rankxpu | ⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxpl.1 | ⊢ 𝐴 ∈ V | |
| 2 | rankxpl.2 | ⊢ 𝐵 ∈ V | |
| 3 | xpsspw | ⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) | |
| 4 | 1 2 | unex | ⊢ ( 𝐴 ∪ 𝐵 ) ∈ V |
| 5 | 4 | pwex | ⊢ 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V |
| 6 | 5 | pwex | ⊢ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ V |
| 7 | 6 | rankss | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) → ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) ) |
| 8 | 3 7 | ax-mp | ⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 9 | 5 | rankpw | ⊢ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) |
| 10 | 4 | rankpw | ⊢ ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 11 | suceq | ⊢ ( ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) → suc ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 12 | 10 11 | ax-mp | ⊢ suc ( rank ‘ 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 13 | 9 12 | eqtri | ⊢ ( rank ‘ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) = suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 14 | 8 13 | sseqtri | ⊢ ( rank ‘ ( 𝐴 × 𝐵 ) ) ⊆ suc suc ( rank ‘ ( 𝐴 ∪ 𝐵 ) ) |