This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3ori.1 | ⊢ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) | |
| Assertion | 3ori | ⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ori.1 | ⊢ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) | |
| 2 | ioran | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) | |
| 3 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 4 | 1 3 | mpbi | ⊢ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) |
| 5 | 4 | ori | ⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → 𝜒 ) |
| 6 | 2 5 | sylbir | ⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → 𝜒 ) |