This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsucuni2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ 𝐴 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝐴 = suc 𝐵 → ( 𝐴 ∈ On ↔ suc 𝐵 ∈ On ) ) | |
| 2 | 1 | biimpac | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐵 ∈ On ) |
| 3 | eloni | ⊢ ( suc 𝐵 ∈ On → Ord suc 𝐵 ) | |
| 4 | ordsuc | ⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) | |
| 5 | ordunisuc | ⊢ ( Ord 𝐵 → ∪ suc 𝐵 = 𝐵 ) | |
| 6 | 4 5 | sylbir | ⊢ ( Ord suc 𝐵 → ∪ suc 𝐵 = 𝐵 ) |
| 7 | suceq | ⊢ ( ∪ suc 𝐵 = 𝐵 → suc ∪ suc 𝐵 = suc 𝐵 ) | |
| 8 | 6 7 | syl | ⊢ ( Ord suc 𝐵 → suc ∪ suc 𝐵 = suc 𝐵 ) |
| 9 | ordunisuc | ⊢ ( Ord suc 𝐵 → ∪ suc suc 𝐵 = suc 𝐵 ) | |
| 10 | 8 9 | eqtr4d | ⊢ ( Ord suc 𝐵 → suc ∪ suc 𝐵 = ∪ suc suc 𝐵 ) |
| 11 | 2 3 10 | 3syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ suc 𝐵 = ∪ suc suc 𝐵 ) |
| 12 | unieq | ⊢ ( 𝐴 = suc 𝐵 → ∪ 𝐴 = ∪ suc 𝐵 ) | |
| 13 | suceq | ⊢ ( ∪ 𝐴 = ∪ suc 𝐵 → suc ∪ 𝐴 = suc ∪ suc 𝐵 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 = suc 𝐵 → suc ∪ 𝐴 = suc ∪ suc 𝐵 ) |
| 15 | suceq | ⊢ ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵 ) | |
| 16 | 15 | unieqd | ⊢ ( 𝐴 = suc 𝐵 → ∪ suc 𝐴 = ∪ suc suc 𝐵 ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝐴 = suc 𝐵 → ( suc ∪ 𝐴 = ∪ suc 𝐴 ↔ suc ∪ suc 𝐵 = ∪ suc suc 𝐵 ) ) |
| 18 | 11 17 | imbitrrid | ⊢ ( 𝐴 = suc 𝐵 → ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ 𝐴 = ∪ suc 𝐴 ) ) |
| 19 | 18 | anabsi7 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ 𝐴 = ∪ suc 𝐴 ) |
| 20 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 21 | ordunisuc | ⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐴 ∈ On → ∪ suc 𝐴 = 𝐴 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → ∪ suc 𝐴 = 𝐴 ) |
| 24 | 19 23 | eqtrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc ∪ 𝐴 = 𝐴 ) |