This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of TakeutiZaring p. 77. (Contributed by NM, 8-Sep-2003) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1ord | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon | ⊢ 𝑅1 Fn On | |
| 2 | 1 | fndmi | ⊢ dom 𝑅1 = On |
| 3 | 2 | eleq2i | ⊢ ( 𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On ) |
| 4 | r1ordg | ⊢ ( 𝐵 ∈ dom 𝑅1 → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 5 | 3 4 | sylbir | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |