This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1wunlim | |- ( A e. V -> ( ( R1 ` A ) e. WUni <-> Lim A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( R1 ` A ) e. WUni ) |
|
| 2 | 1 | wun0 | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> (/) e. ( R1 ` A ) ) |
| 3 | elfvdm | |- ( (/) e. ( R1 ` A ) -> A e. dom R1 ) |
|
| 4 | 2 3 | syl | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. dom R1 ) |
| 5 | r1fnon | |- R1 Fn On |
|
| 6 | 5 | fndmi | |- dom R1 = On |
| 7 | 4 6 | eleqtrdi | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. On ) |
| 8 | eloni | |- ( A e. On -> Ord A ) |
|
| 9 | 7 8 | syl | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> Ord A ) |
| 10 | n0i | |- ( (/) e. ( R1 ` A ) -> -. ( R1 ` A ) = (/) ) |
|
| 11 | 2 10 | syl | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( R1 ` A ) = (/) ) |
| 12 | fveq2 | |- ( A = (/) -> ( R1 ` A ) = ( R1 ` (/) ) ) |
|
| 13 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( A = (/) -> ( R1 ` A ) = (/) ) |
| 15 | 11 14 | nsyl | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. A = (/) ) |
| 16 | onsuc | |- ( A e. On -> suc A e. On ) |
|
| 17 | 7 16 | syl | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> suc A e. On ) |
| 18 | sucidg | |- ( A e. On -> A e. suc A ) |
|
| 19 | 7 18 | syl | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> A e. suc A ) |
| 20 | r1ord | |- ( suc A e. On -> ( A e. suc A -> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
|
| 21 | 17 19 20 | sylc | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 22 | r1elwf | |- ( ( R1 ` A ) e. ( R1 ` suc A ) -> ( R1 ` A ) e. U. ( R1 " On ) ) |
|
| 23 | wfelirr | |- ( ( R1 ` A ) e. U. ( R1 " On ) -> -. ( R1 ` A ) e. ( R1 ` A ) ) |
|
| 24 | 21 22 23 | 3syl | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( R1 ` A ) e. ( R1 ` A ) ) |
| 25 | simprr | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> A = suc x ) |
|
| 26 | 25 | fveq2d | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) = ( R1 ` suc x ) ) |
| 27 | r1suc | |- ( x e. On -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
|
| 28 | 27 | ad2antrl | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` suc x ) = ~P ( R1 ` x ) ) |
| 29 | 26 28 | eqtrd | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) = ~P ( R1 ` x ) ) |
| 30 | simplr | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) e. WUni ) |
|
| 31 | 7 | adantr | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> A e. On ) |
| 32 | sucidg | |- ( x e. On -> x e. suc x ) |
|
| 33 | 32 | ad2antrl | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> x e. suc x ) |
| 34 | 33 25 | eleqtrrd | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> x e. A ) |
| 35 | r1ord | |- ( A e. On -> ( x e. A -> ( R1 ` x ) e. ( R1 ` A ) ) ) |
|
| 36 | 31 34 35 | sylc | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` x ) e. ( R1 ` A ) ) |
| 37 | 30 36 | wunpw | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ~P ( R1 ` x ) e. ( R1 ` A ) ) |
| 38 | 29 37 | eqeltrd | |- ( ( ( A e. V /\ ( R1 ` A ) e. WUni ) /\ ( x e. On /\ A = suc x ) ) -> ( R1 ` A ) e. ( R1 ` A ) ) |
| 39 | 38 | rexlimdvaa | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> ( E. x e. On A = suc x -> ( R1 ` A ) e. ( R1 ` A ) ) ) |
| 40 | 24 39 | mtod | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. E. x e. On A = suc x ) |
| 41 | ioran | |- ( -. ( A = (/) \/ E. x e. On A = suc x ) <-> ( -. A = (/) /\ -. E. x e. On A = suc x ) ) |
|
| 42 | 15 40 41 | sylanbrc | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> -. ( A = (/) \/ E. x e. On A = suc x ) ) |
| 43 | dflim3 | |- ( Lim A <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
|
| 44 | 9 42 43 | sylanbrc | |- ( ( A e. V /\ ( R1 ` A ) e. WUni ) -> Lim A ) |
| 45 | r1limwun | |- ( ( A e. V /\ Lim A ) -> ( R1 ` A ) e. WUni ) |
|
| 46 | 44 45 | impbida | |- ( A e. V -> ( ( R1 ` A ) e. WUni <-> Lim A ) ) |