This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a power set. Part of Exercise 30 of Enderton p. 207. (Contributed by NM, 22-Nov-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankpw.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankpw | ⊢ ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankpw.1 | ⊢ 𝐴 ∈ V | |
| 2 | unir1 | ⊢ ∪ ( 𝑅1 “ On ) = V | |
| 3 | 1 2 | eleqtrri | ⊢ 𝐴 ∈ ∪ ( 𝑅1 “ On ) |
| 4 | rankpwi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) |