This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a power set. Part of Exercise 30 of Enderton p. 207. (Contributed by Mario Carneiro, 3-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankpwi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankidn | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 2 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 3 | r1suc | ⊢ ( ( rank ‘ 𝐴 ) ∈ On → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) |
| 5 | 4 | eleq2i | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ↔ 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 6 | elpwi | ⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 7 | pwidg | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ 𝒫 𝐴 ) | |
| 8 | ssel | ⊢ ( 𝒫 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ 𝒫 𝐴 → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) | |
| 9 | 6 7 8 | syl2imc | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 10 | 5 9 | biimtrid | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 11 | 1 10 | mtod | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 12 | r1rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 13 | 12 | sspwd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 14 | 13 4 | sseqtrrdi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 15 | fvex | ⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∈ V | |
| 16 | 15 | elpw2 | ⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ↔ 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 17 | 14 16 | sylibr | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 18 | 2 | onsuci | ⊢ suc ( rank ‘ 𝐴 ) ∈ On |
| 19 | r1suc | ⊢ ( suc ( rank ‘ 𝐴 ) ∈ On → ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) |
| 21 | 17 20 | eleqtrrdi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) |
| 22 | pwwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 23 | rankr1c | ⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( suc ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ↔ ( ¬ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∧ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) ) ) | |
| 24 | 22 23 | sylbi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( suc ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ↔ ( ¬ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∧ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) ) ) |
| 25 | 11 21 24 | mpbir2and | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ) |
| 26 | 25 | eqcomd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) |