This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A stronger property of R1 than rankpw . The latter merely proves that R1 of the successor is a power set, but here we prove that if A is in the cumulative hierarchy, then ~P A is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pw | |- ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankpwi | |- ( A e. U. ( R1 " On ) -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
|
| 2 | 1 | eleq1d | |- ( A e. U. ( R1 " On ) -> ( ( rank ` ~P A ) e. suc B <-> suc ( rank ` A ) e. suc B ) ) |
| 3 | eloni | |- ( B e. On -> Ord B ) |
|
| 4 | ordsucelsuc | |- ( Ord B -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. suc B ) ) |
|
| 5 | 3 4 | syl | |- ( B e. On -> ( ( rank ` A ) e. B <-> suc ( rank ` A ) e. suc B ) ) |
| 6 | 5 | bicomd | |- ( B e. On -> ( suc ( rank ` A ) e. suc B <-> ( rank ` A ) e. B ) ) |
| 7 | 2 6 | sylan9bb | |- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( ( rank ` ~P A ) e. suc B <-> ( rank ` A ) e. B ) ) |
| 8 | pwwf | |- ( A e. U. ( R1 " On ) <-> ~P A e. U. ( R1 " On ) ) |
|
| 9 | 8 | biimpi | |- ( A e. U. ( R1 " On ) -> ~P A e. U. ( R1 " On ) ) |
| 10 | onsuc | |- ( B e. On -> suc B e. On ) |
|
| 11 | r1fnon | |- R1 Fn On |
|
| 12 | 11 | fndmi | |- dom R1 = On |
| 13 | 10 12 | eleqtrrdi | |- ( B e. On -> suc B e. dom R1 ) |
| 14 | rankr1ag | |- ( ( ~P A e. U. ( R1 " On ) /\ suc B e. dom R1 ) -> ( ~P A e. ( R1 ` suc B ) <-> ( rank ` ~P A ) e. suc B ) ) |
|
| 15 | 9 13 14 | syl2an | |- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( ~P A e. ( R1 ` suc B ) <-> ( rank ` ~P A ) e. suc B ) ) |
| 16 | 12 | eleq2i | |- ( B e. dom R1 <-> B e. On ) |
| 17 | rankr1ag | |- ( ( A e. U. ( R1 " On ) /\ B e. dom R1 ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
|
| 18 | 16 17 | sylan2br | |- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( A e. ( R1 ` B ) <-> ( rank ` A ) e. B ) ) |
| 19 | 7 15 18 | 3bitr4rd | |- ( ( A e. U. ( R1 " On ) /\ B e. On ) -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| 20 | 19 | ex | |- ( A e. U. ( R1 " On ) -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 21 | r1elwf | |- ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |
|
| 22 | r1elwf | |- ( ~P A e. ( R1 ` suc B ) -> ~P A e. U. ( R1 " On ) ) |
|
| 23 | r1elssi | |- ( ~P A e. U. ( R1 " On ) -> ~P A C_ U. ( R1 " On ) ) |
|
| 24 | 22 23 | syl | |- ( ~P A e. ( R1 ` suc B ) -> ~P A C_ U. ( R1 " On ) ) |
| 25 | ssid | |- A C_ A |
|
| 26 | pwexr | |- ( ~P A e. ( R1 ` suc B ) -> A e. _V ) |
|
| 27 | elpwg | |- ( A e. _V -> ( A e. ~P A <-> A C_ A ) ) |
|
| 28 | 26 27 | syl | |- ( ~P A e. ( R1 ` suc B ) -> ( A e. ~P A <-> A C_ A ) ) |
| 29 | 25 28 | mpbiri | |- ( ~P A e. ( R1 ` suc B ) -> A e. ~P A ) |
| 30 | 24 29 | sseldd | |- ( ~P A e. ( R1 ` suc B ) -> A e. U. ( R1 " On ) ) |
| 31 | 21 30 | pm5.21ni | |- ( -. A e. U. ( R1 " On ) -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| 32 | 31 | a1d | |- ( -. A e. U. ( R1 " On ) -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 33 | 20 32 | pm2.61i | |- ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |