This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate shorter proof of r1pw based on the additional axioms ax-reg and ax-inf2 . (Contributed by Raph Levien, 29-May-2004) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pwALT | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 2 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| 4 | 1 3 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ↔ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ↔ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | rankr1a | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 8 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 9 | ordsucelsuc | ⊢ ( Ord 𝐵 → ( ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐵 ∈ On → ( ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) ) |
| 11 | 7 10 | bitrd | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) ) |
| 12 | 6 | rankpw | ⊢ ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 ) |
| 13 | 12 | eleq1i | ⊢ ( ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ↔ suc ( rank ‘ 𝑥 ) ∈ suc 𝐵 ) |
| 14 | 11 13 | bitr4di | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ) ) |
| 15 | onsuc | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) | |
| 16 | 6 | pwex | ⊢ 𝒫 𝑥 ∈ V |
| 17 | 16 | rankr1a | ⊢ ( suc 𝐵 ∈ On → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ) ) |
| 18 | 15 17 | syl | ⊢ ( 𝐵 ∈ On → ( 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝒫 𝑥 ) ∈ suc 𝐵 ) ) |
| 19 | 14 18 | bitr4d | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝑥 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| 20 | 5 19 | vtoclg | ⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
| 21 | elex | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ V ) | |
| 22 | elex | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝒫 𝐴 ∈ V ) | |
| 23 | pwexb | ⊢ ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V ) | |
| 24 | 22 23 | sylibr | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝐴 ∈ V ) |
| 25 | 21 24 | pm5.21ni | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| 26 | 25 | a1d | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
| 27 | 20 26 | pm2.61i | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |