This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | ||
| eqgcpbl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | eqgcpbl | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | |
| 3 | eqgcpbl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | nsgsubg | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 | subgrcl | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐺 ∈ Grp ) |
| 8 | simprl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐴 ∼ 𝐶 ) | |
| 9 | 1 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 10 | 5 9 | syl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝑌 ⊆ 𝑋 ) |
| 11 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 12 | 1 11 3 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝐶 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) ) ) |
| 13 | 7 10 12 | syl2anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 ∼ 𝐶 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) ) ) |
| 14 | 8 13 | mpbid | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) ) |
| 15 | 14 | simp1d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐴 ∈ 𝑋 ) |
| 16 | simprr | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐵 ∼ 𝐷 ) | |
| 17 | 1 11 3 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐵 ∼ 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) ) ) |
| 18 | 7 10 17 | syl2anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐵 ∼ 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) ) ) |
| 19 | 16 18 | mpbid | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) ) |
| 20 | 19 | simp1d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐵 ∈ 𝑋 ) |
| 21 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 22 | 7 15 20 21 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 23 | 14 | simp2d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐶 ∈ 𝑋 ) |
| 24 | 19 | simp2d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐷 ∈ 𝑋 ) |
| 25 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐶 + 𝐷 ) ∈ 𝑋 ) |
| 26 | 7 23 24 25 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐶 + 𝐷 ) ∈ 𝑋 ) |
| 27 | 1 3 11 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 28 | 7 15 20 27 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 29 | 28 | oveq1d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝐶 + 𝐷 ) ) ) |
| 30 | 1 11 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 31 | 7 20 30 | syl2anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 32 | 1 11 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 33 | 7 15 32 | syl2anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 34 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 35 | 7 31 33 26 34 | syl13anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 36 | 29 35 | eqtrd | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 37 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) |
| 38 | 7 33 23 24 37 | syl13anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) |
| 39 | 38 | oveq1d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 40 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑋 ) |
| 41 | 7 33 23 40 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑋 ) |
| 42 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 43 | 7 41 24 31 42 | syl13anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 44 | 39 43 | eqtr3d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 45 | 14 | simp3d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) |
| 46 | 19 | simp3d | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) |
| 47 | simpl | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) | |
| 48 | 1 3 | nsgbi | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ↔ ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) ) |
| 49 | 47 31 24 48 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ↔ ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) ) |
| 50 | 46 49 | mpbid | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) |
| 51 | 3 | subgcl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ∧ ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 52 | 5 45 50 51 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 53 | 44 52 | eqeltrd | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) |
| 54 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑋 ) |
| 55 | 7 33 26 54 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑋 ) |
| 56 | 1 3 | nsgbi | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ∈ 𝑌 ) ) |
| 57 | 47 55 31 56 | syl3anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ∈ 𝑌 ) ) |
| 58 | 53 57 | mpbid | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ∈ 𝑌 ) |
| 59 | 36 58 | eqeltrd | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑌 ) |
| 60 | 1 11 3 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑌 ) ) ) |
| 61 | 7 10 60 | syl2anc | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑌 ) ) ) |
| 62 | 22 26 59 61 | mpbir3and | ⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) |
| 63 | 62 | ex | ⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) ) |