This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring2.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusring2.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusring2.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| qusring2.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| qusring2.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| qusring2.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | ||
| qusring2.e1 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) | ||
| qusring2.e2 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | ||
| qusring2.x | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | qusring2 | ⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ [ 1 ] ∼ = ( 1r ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring2.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusring2.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusring2.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | qusring2.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | qusring2.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 6 | qusring2.r | ⊢ ( 𝜑 → ∼ Er 𝑉 ) | |
| 7 | qusring2.e1 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) | |
| 8 | qusring2.e2 | ⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) | |
| 9 | qusring2.x | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | eqid | ⊢ ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) = ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) | |
| 11 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 12 | 2 11 | eqeltrdi | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 13 | erex | ⊢ ( ∼ Er 𝑉 → ( 𝑉 ∈ V → ∼ ∈ V ) ) | |
| 14 | 6 12 13 | sylc | ⊢ ( 𝜑 → ∼ ∈ V ) |
| 15 | 1 2 10 14 9 | qusval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) “s 𝑅 ) ) |
| 16 | 1 2 10 14 9 | quslem | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| 17 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
| 18 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) | |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 20 | 18 19 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) | |
| 22 | 21 19 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 23 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 24 | 23 3 | ringacl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 | 17 20 22 24 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 | 25 19 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
| 27 | 6 12 10 26 7 | ercpbl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 + 𝑞 ) ) ) ) |
| 28 | 23 4 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 17 20 22 28 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 | 29 19 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 31 | 6 12 10 30 8 | ercpbl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 · 𝑞 ) ) ) ) |
| 32 | 15 2 3 4 5 16 27 31 9 | imasring | ⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |
| 33 | 6 12 10 | divsfval | ⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = [ 1 ] ∼ ) |
| 34 | 33 | eqcomd | ⊢ ( 𝜑 → [ 1 ] ∼ = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) ) |
| 35 | 34 | eqeq1d | ⊢ ( 𝜑 → ( [ 1 ] ∼ = ( 1r ‘ 𝑈 ) ↔ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |
| 36 | 35 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑈 ∈ Ring ∧ [ 1 ] ∼ = ( 1r ‘ 𝑈 ) ) ↔ ( 𝑈 ∈ Ring ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) ) |
| 37 | 32 36 | mpbird | ⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ [ 1 ] ∼ = ( 1r ‘ 𝑈 ) ) ) |