This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection given by pwspjmhm is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwspjmhmmgpd.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwspjmhmmgpd.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwspjmhmmgpd.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | ||
| pwspjmhmmgpd.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) | ||
| pwspjmhmmgpd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| pwspjmhmmgpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| pwspjmhmmgpd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | ||
| Assertion | pwspjmhmmgpd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwspjmhmmgpd.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwspjmhmmgpd.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwspjmhmmgpd.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | |
| 4 | pwspjmhmmgpd.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) | |
| 5 | pwspjmhmmgpd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | pwspjmhmmgpd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 7 | pwspjmhmmgpd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | |
| 8 | 3 2 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 10 | 4 9 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑇 ) |
| 11 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 12 | 3 11 | mgpplusg | ⊢ ( .r ‘ 𝑌 ) = ( +g ‘ 𝑀 ) |
| 13 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 14 | 4 13 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑇 ) |
| 15 | eqid | ⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) | |
| 16 | 3 15 | ringidval | ⊢ ( 1r ‘ 𝑌 ) = ( 0g ‘ 𝑀 ) |
| 17 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 18 | 4 17 | ringidval | ⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑇 ) |
| 19 | 1 | pwsring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
| 20 | 5 6 19 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 21 | 3 | ringmgp | ⊢ ( 𝑌 ∈ Ring → 𝑀 ∈ Mnd ) |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 23 | 4 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝑇 ∈ Mnd ) |
| 24 | 5 23 | syl | ⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 25 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 26 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) |
| 27 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 28 | 1 9 2 25 26 27 | pwselbas | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 29 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝐼 ) |
| 30 | 28 29 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ‘ 𝐴 ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 | 30 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 32 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 33 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
| 34 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) | |
| 35 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) | |
| 36 | 1 2 32 33 34 35 13 11 | pwsmulrval | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) = ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ) |
| 37 | 36 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 ) ) |
| 38 | 1 9 2 32 33 34 | pwselbas | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 39 | 38 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 Fn 𝐼 ) |
| 40 | 1 9 2 32 33 35 | pwselbas | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 41 | 40 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 Fn 𝐼 ) |
| 42 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 43 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝐴 ∈ 𝐼 ) → ( 𝑎 ‘ 𝐴 ) = ( 𝑎 ‘ 𝐴 ) ) | |
| 44 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝐴 ∈ 𝐼 ) → ( 𝑏 ‘ 𝐴 ) = ( 𝑏 ‘ 𝐴 ) ) | |
| 45 | 39 41 33 33 42 43 44 | ofval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ∧ 𝐴 ∈ 𝐼 ) → ( ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 46 | 7 45 | mpidan | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ∘f ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 47 | 37 46 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 48 | 2 11 | ringcl | ⊢ ( ( 𝑌 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 49 | 20 48 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 50 | 49 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
| 51 | fveq1 | ⊢ ( 𝑥 = ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) | |
| 52 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) | |
| 53 | fvex | ⊢ ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ∈ V | |
| 54 | 51 52 53 | fvmpt | ⊢ ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) |
| 55 | 50 54 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) |
| 56 | fveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ‘ 𝐴 ) = ( 𝑎 ‘ 𝐴 ) ) | |
| 57 | fvex | ⊢ ( 𝑎 ‘ 𝐴 ) ∈ V | |
| 58 | 56 52 57 | fvmpt | ⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) = ( 𝑎 ‘ 𝐴 ) ) |
| 59 | 34 58 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) = ( 𝑎 ‘ 𝐴 ) ) |
| 60 | fveq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 ‘ 𝐴 ) = ( 𝑏 ‘ 𝐴 ) ) | |
| 61 | fvex | ⊢ ( 𝑏 ‘ 𝐴 ) ∈ V | |
| 62 | 60 52 61 | fvmpt | ⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) = ( 𝑏 ‘ 𝐴 ) ) |
| 63 | 35 62 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) = ( 𝑏 ‘ 𝐴 ) ) |
| 64 | 59 63 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) ) = ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) |
| 65 | 47 55 64 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) ) ) |
| 66 | 2 15 | ringidcl | ⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ 𝐵 ) |
| 67 | fveq1 | ⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) | |
| 68 | fvex | ⊢ ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ∈ V | |
| 69 | 67 52 68 | fvmpt | ⊢ ( ( 1r ‘ 𝑌 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 70 | 20 66 69 | 3syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 71 | 1 17 | pws1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) = ( 1r ‘ 𝑌 ) ) |
| 72 | 5 6 71 | syl2anc | ⊢ ( 𝜑 → ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) = ( 1r ‘ 𝑌 ) ) |
| 73 | 72 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 ) = ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) |
| 74 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 75 | 74 | fvconst2 | ⊢ ( 𝐴 ∈ 𝐼 → ( ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 76 | 7 75 | syl | ⊢ ( 𝜑 → ( ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 ) = ( 1r ‘ 𝑅 ) ) |
| 77 | 70 73 76 | 3eqtr2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) ) = ( 1r ‘ 𝑅 ) ) |
| 78 | 8 10 12 14 16 18 22 24 31 65 77 | ismhmd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ) |