This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of ismhm . (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismhmd.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| ismhmd.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| ismhmd.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| ismhmd.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| ismhmd.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| ismhmd.z | ⊢ 𝑍 = ( 0g ‘ 𝑇 ) | ||
| ismhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) | ||
| ismhmd.t | ⊢ ( 𝜑 → 𝑇 ∈ Mnd ) | ||
| ismhmd.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | ||
| ismhmd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | ||
| ismhmd.h | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝑍 ) | ||
| Assertion | ismhmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismhmd.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | ismhmd.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | ismhmd.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 4 | ismhmd.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 5 | ismhmd.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 6 | ismhmd.z | ⊢ 𝑍 = ( 0g ‘ 𝑇 ) | |
| 7 | ismhmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) | |
| 8 | ismhmd.t | ⊢ ( 𝜑 → 𝑇 ∈ Mnd ) | |
| 9 | ismhmd.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 10 | ismhmd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 11 | ismhmd.h | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝑍 ) | |
| 12 | 10 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 13 | 9 12 11 | 3jca | ⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ) |
| 14 | 1 2 3 4 5 6 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑍 ) ) ) |
| 15 | 7 8 13 14 | syl21anbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |