This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection given by pwspjmhm is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwspjmhmmgpd.y | |- Y = ( R ^s I ) |
|
| pwspjmhmmgpd.b | |- B = ( Base ` Y ) |
||
| pwspjmhmmgpd.m | |- M = ( mulGrp ` Y ) |
||
| pwspjmhmmgpd.t | |- T = ( mulGrp ` R ) |
||
| pwspjmhmmgpd.r | |- ( ph -> R e. Ring ) |
||
| pwspjmhmmgpd.i | |- ( ph -> I e. V ) |
||
| pwspjmhmmgpd.a | |- ( ph -> A e. I ) |
||
| Assertion | pwspjmhmmgpd | |- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwspjmhmmgpd.y | |- Y = ( R ^s I ) |
|
| 2 | pwspjmhmmgpd.b | |- B = ( Base ` Y ) |
|
| 3 | pwspjmhmmgpd.m | |- M = ( mulGrp ` Y ) |
|
| 4 | pwspjmhmmgpd.t | |- T = ( mulGrp ` R ) |
|
| 5 | pwspjmhmmgpd.r | |- ( ph -> R e. Ring ) |
|
| 6 | pwspjmhmmgpd.i | |- ( ph -> I e. V ) |
|
| 7 | pwspjmhmmgpd.a | |- ( ph -> A e. I ) |
|
| 8 | 3 2 | mgpbas | |- B = ( Base ` M ) |
| 9 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 10 | 4 9 | mgpbas | |- ( Base ` R ) = ( Base ` T ) |
| 11 | eqid | |- ( .r ` Y ) = ( .r ` Y ) |
|
| 12 | 3 11 | mgpplusg | |- ( .r ` Y ) = ( +g ` M ) |
| 13 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 14 | 4 13 | mgpplusg | |- ( .r ` R ) = ( +g ` T ) |
| 15 | eqid | |- ( 1r ` Y ) = ( 1r ` Y ) |
|
| 16 | 3 15 | ringidval | |- ( 1r ` Y ) = ( 0g ` M ) |
| 17 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 18 | 4 17 | ringidval | |- ( 1r ` R ) = ( 0g ` T ) |
| 19 | 1 | pwsring | |- ( ( R e. Ring /\ I e. V ) -> Y e. Ring ) |
| 20 | 5 6 19 | syl2anc | |- ( ph -> Y e. Ring ) |
| 21 | 3 | ringmgp | |- ( Y e. Ring -> M e. Mnd ) |
| 22 | 20 21 | syl | |- ( ph -> M e. Mnd ) |
| 23 | 4 | ringmgp | |- ( R e. Ring -> T e. Mnd ) |
| 24 | 5 23 | syl | |- ( ph -> T e. Mnd ) |
| 25 | 5 | adantr | |- ( ( ph /\ x e. B ) -> R e. Ring ) |
| 26 | 6 | adantr | |- ( ( ph /\ x e. B ) -> I e. V ) |
| 27 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 28 | 1 9 2 25 26 27 | pwselbas | |- ( ( ph /\ x e. B ) -> x : I --> ( Base ` R ) ) |
| 29 | 7 | adantr | |- ( ( ph /\ x e. B ) -> A e. I ) |
| 30 | 28 29 | ffvelcdmd | |- ( ( ph /\ x e. B ) -> ( x ` A ) e. ( Base ` R ) ) |
| 31 | 30 | fmpttd | |- ( ph -> ( x e. B |-> ( x ` A ) ) : B --> ( Base ` R ) ) |
| 32 | 5 | adantr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> R e. Ring ) |
| 33 | 6 | adantr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> I e. V ) |
| 34 | simprl | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
|
| 35 | simprr | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
|
| 36 | 1 2 32 33 34 35 13 11 | pwsmulrval | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` Y ) b ) = ( a oF ( .r ` R ) b ) ) |
| 37 | 36 | fveq1d | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a ( .r ` Y ) b ) ` A ) = ( ( a oF ( .r ` R ) b ) ` A ) ) |
| 38 | 1 9 2 32 33 34 | pwselbas | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a : I --> ( Base ` R ) ) |
| 39 | 38 | ffnd | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a Fn I ) |
| 40 | 1 9 2 32 33 35 | pwselbas | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b : I --> ( Base ` R ) ) |
| 41 | 40 | ffnd | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b Fn I ) |
| 42 | inidm | |- ( I i^i I ) = I |
|
| 43 | eqidd | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( a ` A ) = ( a ` A ) ) |
|
| 44 | eqidd | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( b ` A ) = ( b ` A ) ) |
|
| 45 | 39 41 33 33 42 43 44 | ofval | |- ( ( ( ph /\ ( a e. B /\ b e. B ) ) /\ A e. I ) -> ( ( a oF ( .r ` R ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 46 | 7 45 | mpidan | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a oF ( .r ` R ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 47 | 37 46 | eqtrd | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( a ( .r ` Y ) b ) ` A ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 48 | 2 11 | ringcl | |- ( ( Y e. Ring /\ a e. B /\ b e. B ) -> ( a ( .r ` Y ) b ) e. B ) |
| 49 | 20 48 | syl3an1 | |- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` Y ) b ) e. B ) |
| 50 | 49 | 3expb | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( .r ` Y ) b ) e. B ) |
| 51 | fveq1 | |- ( x = ( a ( .r ` Y ) b ) -> ( x ` A ) = ( ( a ( .r ` Y ) b ) ` A ) ) |
|
| 52 | eqid | |- ( x e. B |-> ( x ` A ) ) = ( x e. B |-> ( x ` A ) ) |
|
| 53 | fvex | |- ( ( a ( .r ` Y ) b ) ` A ) e. _V |
|
| 54 | 51 52 53 | fvmpt | |- ( ( a ( .r ` Y ) b ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( a ( .r ` Y ) b ) ` A ) ) |
| 55 | 50 54 | syl | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( a ( .r ` Y ) b ) ` A ) ) |
| 56 | fveq1 | |- ( x = a -> ( x ` A ) = ( a ` A ) ) |
|
| 57 | fvex | |- ( a ` A ) e. _V |
|
| 58 | 56 52 57 | fvmpt | |- ( a e. B -> ( ( x e. B |-> ( x ` A ) ) ` a ) = ( a ` A ) ) |
| 59 | 34 58 | syl | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` a ) = ( a ` A ) ) |
| 60 | fveq1 | |- ( x = b -> ( x ` A ) = ( b ` A ) ) |
|
| 61 | fvex | |- ( b ` A ) e. _V |
|
| 62 | 60 52 61 | fvmpt | |- ( b e. B -> ( ( x e. B |-> ( x ` A ) ) ` b ) = ( b ` A ) ) |
| 63 | 35 62 | syl | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` b ) = ( b ` A ) ) |
| 64 | 59 63 | oveq12d | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( ( x e. B |-> ( x ` A ) ) ` a ) ( .r ` R ) ( ( x e. B |-> ( x ` A ) ) ` b ) ) = ( ( a ` A ) ( .r ` R ) ( b ` A ) ) ) |
| 65 | 47 55 64 | 3eqtr4d | |- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( a ( .r ` Y ) b ) ) = ( ( ( x e. B |-> ( x ` A ) ) ` a ) ( .r ` R ) ( ( x e. B |-> ( x ` A ) ) ` b ) ) ) |
| 66 | 2 15 | ringidcl | |- ( Y e. Ring -> ( 1r ` Y ) e. B ) |
| 67 | fveq1 | |- ( x = ( 1r ` Y ) -> ( x ` A ) = ( ( 1r ` Y ) ` A ) ) |
|
| 68 | fvex | |- ( ( 1r ` Y ) ` A ) e. _V |
|
| 69 | 67 52 68 | fvmpt | |- ( ( 1r ` Y ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( ( 1r ` Y ) ` A ) ) |
| 70 | 20 66 69 | 3syl | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( ( 1r ` Y ) ` A ) ) |
| 71 | 1 17 | pws1 | |- ( ( R e. Ring /\ I e. V ) -> ( I X. { ( 1r ` R ) } ) = ( 1r ` Y ) ) |
| 72 | 5 6 71 | syl2anc | |- ( ph -> ( I X. { ( 1r ` R ) } ) = ( 1r ` Y ) ) |
| 73 | 72 | fveq1d | |- ( ph -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( ( 1r ` Y ) ` A ) ) |
| 74 | fvex | |- ( 1r ` R ) e. _V |
|
| 75 | 74 | fvconst2 | |- ( A e. I -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( 1r ` R ) ) |
| 76 | 7 75 | syl | |- ( ph -> ( ( I X. { ( 1r ` R ) } ) ` A ) = ( 1r ` R ) ) |
| 77 | 70 73 76 | 3eqtr2d | |- ( ph -> ( ( x e. B |-> ( x ` A ) ) ` ( 1r ` Y ) ) = ( 1r ` R ) ) |
| 78 | 8 10 12 14 16 18 22 24 31 65 77 | ismhmd | |- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) |