This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwspjmhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwspjmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | pwspjmhm | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwspjmhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwspjmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 4 | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 5 | simp2 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) | |
| 6 | fvexd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 7 | fconst6g | ⊢ ( 𝑅 ∈ Mnd → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Mnd ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Mnd ) |
| 9 | simp3 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → 𝐴 ∈ 𝐼 ) | |
| 10 | 3 4 5 6 8 9 | prdspjmhm | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑥 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) MndHom ( ( 𝐼 × { 𝑅 } ) ‘ 𝐴 ) ) ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 12 | 1 11 | pwsval | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 15 | 2 14 | eqtrid | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → 𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 16 | 15 | mpteq1d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ↦ ( 𝑥 ‘ 𝐴 ) ) ) |
| 17 | fvconst2g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝐴 ) = 𝑅 ) | |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝐴 ) = 𝑅 ) |
| 19 | 18 | eqcomd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → 𝑅 = ( ( 𝐼 × { 𝑅 } ) ‘ 𝐴 ) ) |
| 20 | 13 19 | oveq12d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑌 MndHom 𝑅 ) = ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) MndHom ( ( 𝐼 × { 𝑅 } ) ‘ 𝐴 ) ) ) |
| 21 | 10 16 20 | 3eltr4d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |