This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left composition with a monoid homomorphism yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsco2mhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| pwsco2mhm.z | ⊢ 𝑍 = ( 𝑆 ↑s 𝐴 ) | ||
| pwsco2mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsco2mhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| pwsco2mhm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) | ||
| Assertion | pwsco2mhm | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsco2mhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| 2 | pwsco2mhm.z | ⊢ 𝑍 = ( 𝑆 ↑s 𝐴 ) | |
| 3 | pwsco2mhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | pwsco2mhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | pwsco2mhm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 6 | mhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑅 ∈ Mnd ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 8 | 1 | pwsmnd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Mnd ) |
| 9 | 7 4 8 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 10 | mhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝑆 ∈ Mnd ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 12 | 2 | pwsmnd | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝑍 ∈ Mnd ) |
| 13 | 11 4 12 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ Mnd ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 16 | 14 15 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 17 | 5 16 | syl | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 18 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) | |
| 21 | 1 14 3 18 19 20 | pwselbas | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 22 | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ 𝑔 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | |
| 23 | 17 21 22 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
| 24 | eqid | ⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) | |
| 25 | 2 15 24 | pwselbasb | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
| 26 | 11 19 25 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐹 ∘ 𝑔 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
| 27 | 23 26 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝐹 ∘ 𝑔 ) ∈ ( Base ‘ 𝑍 ) ) |
| 28 | 27 | fmpttd | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 ) ) |
| 29 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 31 | 29 6 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Mnd ) |
| 32 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐴 ∈ 𝑉 ) |
| 33 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 34 | 1 14 3 31 32 33 | pwselbas | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 35 | 34 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 37 | 1 14 3 31 32 36 | pwselbas | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) |
| 39 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 40 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 41 | 14 39 40 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 42 | 30 35 38 41 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 43 | 42 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 44 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ∈ V ) | |
| 45 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ∈ V ) | |
| 46 | 34 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 = ( 𝑤 ∈ 𝐴 ↦ ( 𝑥 ‘ 𝑤 ) ) ) |
| 47 | 29 16 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 48 | 47 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 = ( 𝑧 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 49 | fveq2 | ⊢ ( 𝑧 = ( 𝑥 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ) | |
| 50 | 35 46 48 49 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑥 ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ) ) |
| 51 | 37 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 = ( 𝑤 ∈ 𝐴 ↦ ( 𝑦 ‘ 𝑤 ) ) ) |
| 52 | fveq2 | ⊢ ( 𝑧 = ( 𝑦 ‘ 𝑤 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) | |
| 53 | 38 51 48 52 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑦 ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 54 | 32 44 45 50 53 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑥 ) ∘f ( +g ‘ 𝑆 ) ( 𝐹 ∘ 𝑦 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 55 | 43 54 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) = ( ( 𝐹 ∘ 𝑥 ) ∘f ( +g ‘ 𝑆 ) ( 𝐹 ∘ 𝑦 ) ) ) |
| 56 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → 𝑅 ∈ Mnd ) |
| 57 | 14 39 | mndcl | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 58 | 56 35 38 57 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 60 | 1 3 31 32 33 36 39 59 | pwsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 61 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑤 ) ∈ V ) | |
| 62 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑦 ‘ 𝑤 ) ∈ V ) | |
| 63 | 32 61 62 46 51 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 64 | 60 63 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 65 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) | |
| 66 | 58 64 48 65 | fmptco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 67 | 29 10 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ Mnd ) |
| 68 | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ 𝑥 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | |
| 69 | 47 34 68 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
| 70 | 2 15 24 | pwselbasb | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 ∘ 𝑥 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
| 71 | 67 32 70 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑥 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
| 72 | 69 71 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑥 ) ∈ ( Base ‘ 𝑍 ) ) |
| 73 | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ 𝑦 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | |
| 74 | 47 37 73 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) |
| 75 | 2 15 24 | pwselbasb | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐹 ∘ 𝑦 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
| 76 | 67 32 75 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑦 ) ∈ ( Base ‘ 𝑍 ) ↔ ( 𝐹 ∘ 𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) |
| 77 | 74 76 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ 𝑦 ) ∈ ( Base ‘ 𝑍 ) ) |
| 78 | eqid | ⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) | |
| 79 | 2 24 67 32 72 77 40 78 | pwsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ∘ 𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹 ∘ 𝑦 ) ) = ( ( 𝐹 ∘ 𝑥 ) ∘f ( +g ‘ 𝑆 ) ( 𝐹 ∘ 𝑦 ) ) ) |
| 80 | 55 66 79 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( 𝐹 ∘ 𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹 ∘ 𝑦 ) ) ) |
| 81 | eqid | ⊢ ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) | |
| 82 | coeq2 | ⊢ ( 𝑔 = ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ) | |
| 83 | 3 59 | mndcl | ⊢ ( ( 𝑌 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) |
| 84 | 83 | 3expb | ⊢ ( ( 𝑌 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) |
| 85 | 9 84 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) |
| 86 | coexg | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ∈ V ) | |
| 87 | 5 85 86 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ∈ V ) |
| 88 | 81 82 85 87 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( 𝐹 ∘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ) |
| 89 | coeq2 | ⊢ ( 𝑔 = 𝑥 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑥 ) ) | |
| 90 | 81 89 33 72 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) = ( 𝐹 ∘ 𝑥 ) ) |
| 91 | coeq2 | ⊢ ( 𝑔 = 𝑦 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑦 ) ) | |
| 92 | 81 91 36 77 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) = ( 𝐹 ∘ 𝑦 ) ) |
| 93 | 90 92 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) = ( ( 𝐹 ∘ 𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹 ∘ 𝑦 ) ) ) |
| 94 | 80 88 93 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ) |
| 95 | 94 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ) |
| 96 | coeq2 | ⊢ ( 𝑔 = ( 0g ‘ 𝑌 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ) | |
| 97 | eqid | ⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) | |
| 98 | 3 97 | mndidcl | ⊢ ( 𝑌 ∈ Mnd → ( 0g ‘ 𝑌 ) ∈ 𝐵 ) |
| 99 | 9 98 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑌 ) ∈ 𝐵 ) |
| 100 | coexg | ⊢ ( ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ∧ ( 0g ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ∈ V ) | |
| 101 | 5 99 100 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ∈ V ) |
| 102 | 81 96 99 101 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ) |
| 103 | 17 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 104 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 105 | 14 104 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 106 | 7 105 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 107 | fcoconst | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ∘ ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) = ( 𝐴 × { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) ) | |
| 108 | 103 106 107 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) = ( 𝐴 × { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) ) |
| 109 | 1 104 | pws0g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
| 110 | 7 4 109 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
| 111 | 110 | coeq2d | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) = ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) ) |
| 112 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 113 | 104 112 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 114 | 5 113 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 115 | 114 | sneqd | ⊢ ( 𝜑 → { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } = { ( 0g ‘ 𝑆 ) } ) |
| 116 | 115 | xpeq2d | ⊢ ( 𝜑 → ( 𝐴 × { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) = ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) ) |
| 117 | 108 111 116 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐹 ∘ ( 0g ‘ 𝑌 ) ) = ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) ) |
| 118 | 2 112 | pws0g | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ 𝑍 ) ) |
| 119 | 11 4 118 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ 𝑍 ) ) |
| 120 | 102 117 119 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝑍 ) ) |
| 121 | 28 95 120 | 3jca | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝑍 ) ) ) |
| 122 | eqid | ⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) | |
| 123 | 3 24 59 78 97 122 | ismhm | ⊢ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) ↔ ( ( 𝑌 ∈ Mnd ∧ 𝑍 ∈ Mnd ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝑍 ) ) ) ) |
| 124 | 9 13 121 123 | syl21anbrc | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) ) |