This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfi . (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwfilem.1 | ⊢ 𝐹 = ( 𝑐 ∈ 𝒫 𝑏 ↦ ( 𝑐 ∪ { 𝑥 } ) ) | |
| Assertion | pwfilem | ⊢ ( 𝒫 𝑏 ∈ Fin → 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfilem.1 | ⊢ 𝐹 = ( 𝑐 ∈ 𝒫 𝑏 ↦ ( 𝑐 ∪ { 𝑥 } ) ) | |
| 2 | pwundif | ⊢ 𝒫 ( 𝑏 ∪ { 𝑥 } ) = ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) | |
| 3 | 1 | funmpt2 | ⊢ Fun 𝐹 |
| 4 | vex | ⊢ 𝑐 ∈ V | |
| 5 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 6 | 4 5 | unex | ⊢ ( 𝑐 ∪ { 𝑥 } ) ∈ V |
| 7 | 6 1 | dmmpti | ⊢ dom 𝐹 = 𝒫 𝑏 |
| 8 | 7 | imaeq2i | ⊢ ( 𝐹 “ dom 𝐹 ) = ( 𝐹 “ 𝒫 𝑏 ) |
| 9 | imadmrn | ⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 | |
| 10 | 8 9 | eqtr3i | ⊢ ( 𝐹 “ 𝒫 𝑏 ) = ran 𝐹 |
| 11 | imafi | ⊢ ( ( Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin ) → ( 𝐹 “ 𝒫 𝑏 ) ∈ Fin ) | |
| 12 | 10 11 | eqeltrrid | ⊢ ( ( Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin ) → ran 𝐹 ∈ Fin ) |
| 13 | 3 12 | mpan | ⊢ ( 𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin ) |
| 14 | eldifi | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 ∈ 𝒫 ( 𝑏 ∪ { 𝑥 } ) ) | |
| 15 | 5 | elpwun | ⊢ ( 𝑑 ∈ 𝒫 ( 𝑏 ∪ { 𝑥 } ) ↔ ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ) |
| 16 | 14 15 | sylib | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ) |
| 17 | undif1 | ⊢ ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( 𝑑 ∪ { 𝑥 } ) | |
| 18 | elpwunsn | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑥 ∈ 𝑑 ) | |
| 19 | 18 | snssd | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → { 𝑥 } ⊆ 𝑑 ) |
| 20 | ssequn2 | ⊢ ( { 𝑥 } ⊆ 𝑑 ↔ ( 𝑑 ∪ { 𝑥 } ) = 𝑑 ) | |
| 21 | 19 20 | sylib | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ( 𝑑 ∪ { 𝑥 } ) = 𝑑 ) |
| 22 | 17 21 | eqtr2id | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
| 23 | uneq1 | ⊢ ( 𝑐 = ( 𝑑 ∖ { 𝑥 } ) → ( 𝑐 ∪ { 𝑥 } ) = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) | |
| 24 | 23 | rspceeqv | ⊢ ( ( ( 𝑑 ∖ { 𝑥 } ) ∈ 𝒫 𝑏 ∧ 𝑑 = ( ( 𝑑 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) → ∃ 𝑐 ∈ 𝒫 𝑏 𝑑 = ( 𝑐 ∪ { 𝑥 } ) ) |
| 25 | 16 22 24 | syl2anc | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → ∃ 𝑐 ∈ 𝒫 𝑏 𝑑 = ( 𝑐 ∪ { 𝑥 } ) ) |
| 26 | 1 25 14 | elrnmptd | ⊢ ( 𝑑 ∈ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) → 𝑑 ∈ ran 𝐹 ) |
| 27 | 26 | ssriv | ⊢ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ⊆ ran 𝐹 |
| 28 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ⊆ ran 𝐹 ) → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ) | |
| 29 | 13 27 28 | sylancl | ⊢ ( 𝒫 𝑏 ∈ Fin → ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ) |
| 30 | unfi | ⊢ ( ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin ) → ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) ∈ Fin ) | |
| 31 | 29 30 | mpancom | ⊢ ( 𝒫 𝑏 ∈ Fin → ( ( 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∖ 𝒫 𝑏 ) ∪ 𝒫 𝑏 ) ∈ Fin ) |
| 32 | 2 31 | eqeltrid | ⊢ ( 𝒫 𝑏 ∈ Fin → 𝒫 ( 𝑏 ∪ { 𝑥 } ) ∈ Fin ) |