This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfi . (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pwfilem.1 | |- F = ( c e. ~P b |-> ( c u. { x } ) ) |
|
| Assertion | pwfilem | |- ( ~P b e. Fin -> ~P ( b u. { x } ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfilem.1 | |- F = ( c e. ~P b |-> ( c u. { x } ) ) |
|
| 2 | pwundif | |- ~P ( b u. { x } ) = ( ( ~P ( b u. { x } ) \ ~P b ) u. ~P b ) |
|
| 3 | 1 | funmpt2 | |- Fun F |
| 4 | vex | |- c e. _V |
|
| 5 | vsnex | |- { x } e. _V |
|
| 6 | 4 5 | unex | |- ( c u. { x } ) e. _V |
| 7 | 6 1 | dmmpti | |- dom F = ~P b |
| 8 | 7 | imaeq2i | |- ( F " dom F ) = ( F " ~P b ) |
| 9 | imadmrn | |- ( F " dom F ) = ran F |
|
| 10 | 8 9 | eqtr3i | |- ( F " ~P b ) = ran F |
| 11 | imafi | |- ( ( Fun F /\ ~P b e. Fin ) -> ( F " ~P b ) e. Fin ) |
|
| 12 | 10 11 | eqeltrrid | |- ( ( Fun F /\ ~P b e. Fin ) -> ran F e. Fin ) |
| 13 | 3 12 | mpan | |- ( ~P b e. Fin -> ran F e. Fin ) |
| 14 | eldifi | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> d e. ~P ( b u. { x } ) ) |
|
| 15 | 5 | elpwun | |- ( d e. ~P ( b u. { x } ) <-> ( d \ { x } ) e. ~P b ) |
| 16 | 14 15 | sylib | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> ( d \ { x } ) e. ~P b ) |
| 17 | undif1 | |- ( ( d \ { x } ) u. { x } ) = ( d u. { x } ) |
|
| 18 | elpwunsn | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> x e. d ) |
|
| 19 | 18 | snssd | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> { x } C_ d ) |
| 20 | ssequn2 | |- ( { x } C_ d <-> ( d u. { x } ) = d ) |
|
| 21 | 19 20 | sylib | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> ( d u. { x } ) = d ) |
| 22 | 17 21 | eqtr2id | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> d = ( ( d \ { x } ) u. { x } ) ) |
| 23 | uneq1 | |- ( c = ( d \ { x } ) -> ( c u. { x } ) = ( ( d \ { x } ) u. { x } ) ) |
|
| 24 | 23 | rspceeqv | |- ( ( ( d \ { x } ) e. ~P b /\ d = ( ( d \ { x } ) u. { x } ) ) -> E. c e. ~P b d = ( c u. { x } ) ) |
| 25 | 16 22 24 | syl2anc | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> E. c e. ~P b d = ( c u. { x } ) ) |
| 26 | 1 25 14 | elrnmptd | |- ( d e. ( ~P ( b u. { x } ) \ ~P b ) -> d e. ran F ) |
| 27 | 26 | ssriv | |- ( ~P ( b u. { x } ) \ ~P b ) C_ ran F |
| 28 | ssfi | |- ( ( ran F e. Fin /\ ( ~P ( b u. { x } ) \ ~P b ) C_ ran F ) -> ( ~P ( b u. { x } ) \ ~P b ) e. Fin ) |
|
| 29 | 13 27 28 | sylancl | |- ( ~P b e. Fin -> ( ~P ( b u. { x } ) \ ~P b ) e. Fin ) |
| 30 | unfi | |- ( ( ( ~P ( b u. { x } ) \ ~P b ) e. Fin /\ ~P b e. Fin ) -> ( ( ~P ( b u. { x } ) \ ~P b ) u. ~P b ) e. Fin ) |
|
| 31 | 29 30 | mpancom | |- ( ~P b e. Fin -> ( ( ~P ( b u. { x } ) \ ~P b ) u. ~P b ) e. Fin ) |
| 32 | 2 31 | eqeltrid | |- ( ~P b e. Fin -> ~P ( b u. { x } ) e. Fin ) |