This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 , equivalent to canth ). (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthwdom | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 | |
| 2 | ne0i | ⊢ ( ∅ ∈ 𝒫 𝐴 → 𝒫 𝐴 ≠ ∅ ) | |
| 3 | 1 2 | mp1i | ⊢ ( 𝒫 𝐴 ≼* 𝐴 → 𝒫 𝐴 ≠ ∅ ) |
| 4 | brwdomn0 | ⊢ ( 𝒫 𝐴 ≠ ∅ → ( 𝒫 𝐴 ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝒫 𝐴 ≼* 𝐴 → ( 𝒫 𝐴 ≼* 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) ) |
| 6 | 5 | ibi | ⊢ ( 𝒫 𝐴 ≼* 𝐴 → ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) |
| 7 | relwdom | ⊢ Rel ≼* | |
| 8 | 7 | brrelex2i | ⊢ ( 𝒫 𝐴 ≼* 𝐴 → 𝐴 ∈ V ) |
| 9 | foeq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –onto→ 𝒫 𝑥 ↔ 𝑓 : 𝐴 –onto→ 𝒫 𝑥 ) ) | |
| 10 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 11 | foeq3 | ⊢ ( 𝒫 𝑥 = 𝒫 𝐴 → ( 𝑓 : 𝐴 –onto→ 𝒫 𝑥 ↔ 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝐴 –onto→ 𝒫 𝑥 ↔ 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) ) |
| 13 | 9 12 | bitrd | ⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –onto→ 𝒫 𝑥 ↔ 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) ) |
| 14 | 13 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝑓 : 𝑥 –onto→ 𝒫 𝑥 ↔ ¬ 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) ) |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | 15 | canth | ⊢ ¬ 𝑓 : 𝑥 –onto→ 𝒫 𝑥 |
| 17 | 14 16 | vtoclg | ⊢ ( 𝐴 ∈ V → ¬ 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) |
| 18 | 8 17 | syl | ⊢ ( 𝒫 𝐴 ≼* 𝐴 → ¬ 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) |
| 19 | 18 | nexdv | ⊢ ( 𝒫 𝐴 ≼* 𝐴 → ¬ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝒫 𝐴 ) |
| 20 | 6 19 | pm2.65i | ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 |