This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpss | ⊢ ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infn0 | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) | |
| 2 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) | |
| 3 | 1 2 | sylib | ⊢ ( ω ≼ 𝐴 → ∃ 𝑦 𝑦 ∈ 𝐴 ) |
| 4 | reldom | ⊢ Rel ≼ | |
| 5 | 4 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 6 | 5 | difexd | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ∖ { 𝑦 } ) ∈ V ) |
| 7 | 6 | adantr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ∈ V ) |
| 8 | simpr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 9 | difsnpss | ⊢ ( 𝑦 ∈ 𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) |
| 11 | infdifsn | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) | |
| 12 | 11 | adantr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) |
| 13 | 10 12 | jca | ⊢ ( ( ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ∧ ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) ) |
| 14 | psseq1 | ⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝑥 ⊊ 𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) ) | |
| 15 | breq1 | ⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝑥 ≈ 𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ↔ ( ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ∧ ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) ) ) |
| 17 | 7 13 16 | spcedv | ⊢ ( ( ω ≼ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |
| 18 | 3 17 | exlimddv | ⊢ ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |