This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sincosq1sgn . (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq1lem | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 0 < ( sin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 2 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ ( π / 2 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ ( π / 2 ) ) ) |
| 4 | pire | ⊢ π ∈ ℝ | |
| 5 | 4re | ⊢ 4 ∈ ℝ | |
| 6 | pigt2lt4 | ⊢ ( 2 < π ∧ π < 4 ) | |
| 7 | 6 | simpri | ⊢ π < 4 |
| 8 | 4 5 7 | ltleii | ⊢ π ≤ 4 |
| 9 | 2re | ⊢ 2 ∈ ℝ | |
| 10 | 2pos | ⊢ 0 < 2 | |
| 11 | 9 10 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 12 | ledivmul | ⊢ ( ( π ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( π / 2 ) ≤ 2 ↔ π ≤ ( 2 · 2 ) ) ) | |
| 13 | 4 9 11 12 | mp3an | ⊢ ( ( π / 2 ) ≤ 2 ↔ π ≤ ( 2 · 2 ) ) |
| 14 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 15 | 14 | breq2i | ⊢ ( π ≤ ( 2 · 2 ) ↔ π ≤ 4 ) |
| 16 | 13 15 | bitri | ⊢ ( ( π / 2 ) ≤ 2 ↔ π ≤ 4 ) |
| 17 | 8 16 | mpbir | ⊢ ( π / 2 ) ≤ 2 |
| 18 | letr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( 𝐴 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ 2 ) → 𝐴 ≤ 2 ) ) | |
| 19 | 1 9 18 | mp3an23 | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ 2 ) → 𝐴 ≤ 2 ) ) |
| 20 | 17 19 | mpan2i | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ ( π / 2 ) → 𝐴 ≤ 2 ) ) |
| 21 | 3 20 | syld | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ 2 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 < ( π / 2 ) → 𝐴 ≤ 2 ) ) |
| 23 | 22 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 𝐴 ≤ 2 ) |
| 24 | 0xr | ⊢ 0 ∈ ℝ* | |
| 25 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) ) | |
| 26 | 24 9 25 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) ) |
| 27 | sin02gt0 | ⊢ ( 𝐴 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 𝐴 ) ) | |
| 28 | 26 27 | sylbir | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 2 ) → 0 < ( sin ‘ 𝐴 ) ) |
| 29 | 23 28 | syld3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < ( π / 2 ) ) → 0 < ( sin ‘ 𝐴 ) ) |