This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | add4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add12 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 + ( 𝐶 + 𝐷 ) ) = ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) |
| 3 | 2 | oveq2d | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
| 4 | 3 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
| 5 | addcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) ∈ ℂ ) | |
| 6 | addass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) | |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) |
| 8 | 5 7 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐶 + 𝐷 ) ) ) ) |
| 9 | addcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐵 + 𝐷 ) ∈ ℂ ) | |
| 10 | addass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 + 𝐷 ) ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
| 12 | 9 11 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
| 13 | 12 | an4s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) = ( 𝐴 + ( 𝐶 + ( 𝐵 + 𝐷 ) ) ) ) |
| 14 | 4 8 13 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐷 ) ) ) |