This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine of a number plus _pi . (Contributed by NM, 18-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosppi | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + π ) ) = - ( cos ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | ⊢ π ∈ ℂ | |
| 2 | cosadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ π ∈ ℂ ) → ( cos ‘ ( 𝐴 + π ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ π ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ π ) ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + π ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ π ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ π ) ) ) ) |
| 4 | cospi | ⊢ ( cos ‘ π ) = - 1 | |
| 5 | 4 | oveq2i | ⊢ ( ( cos ‘ 𝐴 ) · ( cos ‘ π ) ) = ( ( cos ‘ 𝐴 ) · - 1 ) |
| 6 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 7 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 8 | mulcom | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · - 1 ) = ( - 1 · ( cos ‘ 𝐴 ) ) ) | |
| 9 | 7 8 | mpan2 | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( ( cos ‘ 𝐴 ) · - 1 ) = ( - 1 · ( cos ‘ 𝐴 ) ) ) |
| 10 | mulm1 | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( - 1 · ( cos ‘ 𝐴 ) ) = - ( cos ‘ 𝐴 ) ) | |
| 11 | 9 10 | eqtrd | ⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( ( cos ‘ 𝐴 ) · - 1 ) = - ( cos ‘ 𝐴 ) ) |
| 12 | 6 11 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) · - 1 ) = - ( cos ‘ 𝐴 ) ) |
| 13 | 5 12 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) · ( cos ‘ π ) ) = - ( cos ‘ 𝐴 ) ) |
| 14 | sinpi | ⊢ ( sin ‘ π ) = 0 | |
| 15 | 14 | oveq2i | ⊢ ( ( sin ‘ 𝐴 ) · ( sin ‘ π ) ) = ( ( sin ‘ 𝐴 ) · 0 ) |
| 16 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 17 | 16 | mul01d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · 0 ) = 0 ) |
| 18 | 15 17 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) · ( sin ‘ π ) ) = 0 ) |
| 19 | 13 18 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ π ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ π ) ) ) = ( - ( cos ‘ 𝐴 ) − 0 ) ) |
| 20 | 6 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 21 | 20 | subid1d | ⊢ ( 𝐴 ∈ ℂ → ( - ( cos ‘ 𝐴 ) − 0 ) = - ( cos ‘ 𝐴 ) ) |
| 22 | 19 21 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ π ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ π ) ) ) = - ( cos ‘ 𝐴 ) ) |
| 23 | 3 22 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 𝐴 + π ) ) = - ( cos ‘ 𝐴 ) ) |