This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptcld.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| ptcld.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) | ||
| ptcld.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | ptcld | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcld.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | ptcld.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) | |
| 3 | ptcld.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 4 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) | |
| 5 | 4 | cldss | ⊢ ( 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) → 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 6 | 3 5 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 8 | boxriin | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → X 𝑘 ∈ 𝐴 𝐶 = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝐶 = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 10 | eqid | ⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) | |
| 11 | 10 | ptuni | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 12 | 1 2 11 | syl2anc | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 13 | 12 | ineq1d | ⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( ∪ ( ∏t ‘ 𝐹 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 14 | pttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) | |
| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 16 | sseq1 | ⊢ ( 𝐶 = if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ↔ if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 17 | sseq1 | ⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ↔ if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 18 | simpl | ⊢ ( ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ∧ 𝑘 = 𝑥 ) → 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 19 | ssidd | ⊢ ( ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ¬ 𝑘 = 𝑥 ) → ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 20 | 16 17 18 19 | ifbothda | ⊢ ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 21 | 20 | ralimi | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 22 | ss2ixp | ⊢ ( ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) | |
| 23 | 7 21 22 | 3syl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 25 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 26 | 24 25 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ) |
| 27 | 12 | eqcomd | ⊢ ( 𝜑 → ∪ ( ∏t ‘ 𝐹 ) = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 28 | 27 | difeq1d | ⊢ ( 𝜑 → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 31 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 32 | boxcutc | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 33 | 30 31 32 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 | ixpeq2 | ⊢ ( ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 35 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 36 | 35 | unieqd | ⊢ ( 𝑘 = 𝑥 → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑥 ) ) |
| 37 | csbeq1a | ⊢ ( 𝑘 = 𝑥 → 𝐶 = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) | |
| 38 | 36 37 | difeq12d | ⊢ ( 𝑘 = 𝑥 → ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) = ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝑘 = 𝑥 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) = ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ) |
| 40 | 39 | ifeq1da | ⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 41 | 34 40 | mprg | ⊢ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 42 | 41 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 43 | 29 33 42 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 44 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
| 45 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ Top ) |
| 46 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 47 | nfv | ⊢ Ⅎ 𝑥 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) | |
| 48 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 | |
| 49 | 48 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) |
| 50 | 2fveq3 | ⊢ ( 𝑘 = 𝑥 → ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) = ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 51 | 37 50 | eleq12d | ⊢ ( 𝑘 = 𝑥 → ( 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 52 | 47 49 51 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 | 46 52 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 | 53 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 55 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝑥 ) = ∪ ( 𝐹 ‘ 𝑥 ) | |
| 56 | 55 | cldopn | ⊢ ( ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) → ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 57 | 54 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 58 | 44 45 57 | ptopn2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ∏t ‘ 𝐹 ) ) |
| 59 | 43 58 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) |
| 60 | eqid | ⊢ ∪ ( ∏t ‘ 𝐹 ) = ∪ ( ∏t ‘ 𝐹 ) | |
| 61 | 60 | iscld | ⊢ ( ( ∏t ‘ 𝐹 ) ∈ Top → ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ↔ ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) ) ) |
| 62 | 15 61 | syl | ⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ↔ ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ↔ ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) ) ) |
| 64 | 26 59 63 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 65 | 64 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 66 | 60 | riincld | ⊢ ( ( ( ∏t ‘ 𝐹 ) ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) → ( ∪ ( ∏t ‘ 𝐹 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 67 | 15 65 66 | syl2anc | ⊢ ( 𝜑 → ( ∪ ( ∏t ‘ 𝐹 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 68 | 13 67 | eqeltrd | ⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 69 | 9 68 | eqeltrd | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |