This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ptopn2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| ptopn2.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) | ||
| ptopn2.o | ⊢ ( 𝜑 → 𝑂 ∈ ( 𝐹 ‘ 𝑌 ) ) | ||
| Assertion | ptopn2 | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ∏t ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptopn2.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | ptopn2.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) | |
| 3 | ptopn2.o | ⊢ ( 𝜑 → 𝑂 ∈ ( 𝐹 ‘ 𝑌 ) ) | |
| 4 | snfi | ⊢ { 𝑌 } ∈ Fin | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → { 𝑌 } ∈ Fin ) |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑂 ∈ ( 𝐹 ‘ 𝑌 ) ) |
| 7 | fveq2 | ⊢ ( 𝑘 = 𝑌 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑌 ) ) | |
| 8 | 7 | eleq2d | ⊢ ( 𝑘 = 𝑌 → ( 𝑂 ∈ ( 𝐹 ‘ 𝑘 ) ↔ 𝑂 ∈ ( 𝐹 ‘ 𝑌 ) ) ) |
| 9 | 6 8 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 = 𝑌 → 𝑂 ∈ ( 𝐹 ‘ 𝑘 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 = 𝑌 ) → 𝑂 ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 11 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 12 | eqid | ⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) | |
| 13 | 12 | topopn | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ¬ 𝑘 = 𝑌 ) → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 16 | 10 15 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 17 | eldifn | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) → ¬ 𝑘 ∈ { 𝑌 } ) | |
| 18 | velsn | ⊢ ( 𝑘 ∈ { 𝑌 } ↔ 𝑘 = 𝑌 ) | |
| 19 | 17 18 | sylnib | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) → ¬ 𝑘 = 𝑌 ) |
| 20 | 19 | iffalsed | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) → if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) ) → if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 22 | 1 2 5 16 21 | ptopn | ⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ∏t ‘ 𝐹 ) ) |