This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relative complement of a box set restricted on one axis. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | boxcutc | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | ⊢ ( 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) → 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) → 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) |
| 3 | sseq1 | ⊢ ( ( 𝐵 ∖ 𝐶 ) = if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) → ( ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 ↔ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 ) ) | |
| 4 | sseq1 | ⊢ ( 𝐵 = if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) → ( 𝐵 ⊆ 𝐵 ↔ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 ) ) | |
| 5 | difss | ⊢ ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 | |
| 6 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 7 | 3 4 5 6 | keephyp | ⊢ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 |
| 8 | 7 | rgenw | ⊢ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 |
| 9 | ss2ixp | ⊢ ( ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ X 𝑘 ∈ 𝐴 𝐵 ) | |
| 10 | 8 9 | mp1i | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ X 𝑘 ∈ 𝐴 𝐵 ) |
| 11 | 10 | sselda | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) → 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) |
| 12 | vex | ⊢ 𝑧 ∈ V | |
| 13 | 12 | elixp | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) |
| 14 | ixpfn | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → 𝑧 Fn 𝐴 ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → 𝑧 Fn 𝐴 ) |
| 16 | 15 | biantrurd | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) ) |
| 17 | 13 16 | bitr4id | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) |
| 18 | 17 | notbid | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) |
| 19 | rexnal | ⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) | |
| 20 | eleq2 | ⊢ ( ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) = if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ↔ ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 21 | eleq2 | ⊢ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ↔ ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 22 | eleq2 | ⊢ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐶 = if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ↔ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 23 | eleq2 | ⊢ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ↔ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 24 | simpl | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → 𝑋 ∈ 𝐴 ) | |
| 25 | 12 | elixp | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ) ) |
| 26 | 25 | simprbi | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ) |
| 27 | nfv | ⊢ Ⅎ 𝑙 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 | |
| 28 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 | |
| 29 | 28 | nfel2 | ⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 |
| 30 | fveq2 | ⊢ ( 𝑘 = 𝑙 → ( 𝑧 ‘ 𝑘 ) = ( 𝑧 ‘ 𝑙 ) ) | |
| 31 | csbeq1a | ⊢ ( 𝑘 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) | |
| 32 | 30 31 | eleq12d | ⊢ ( 𝑘 = 𝑙 → ( ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 33 | 27 29 32 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 34 | 26 33 | sylib | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 35 | fveq2 | ⊢ ( 𝑙 = 𝑋 → ( 𝑧 ‘ 𝑙 ) = ( 𝑧 ‘ 𝑋 ) ) | |
| 36 | csbeq1 | ⊢ ( 𝑙 = 𝑋 → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) | |
| 37 | 35 36 | eleq12d | ⊢ ( 𝑙 = 𝑋 → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ↔ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) ) |
| 38 | 37 | rspcva | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) |
| 39 | 24 34 38 | syl2an | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) |
| 40 | neldif | ⊢ ( ( ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) | |
| 41 | 39 40 | sylan | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
| 42 | 41 | adantr | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
| 43 | csbeq1 | ⊢ ( 𝑙 = 𝑋 → ⦋ 𝑙 / 𝑘 ⦌ 𝐶 = ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) | |
| 44 | 35 43 | eleq12d | ⊢ ( 𝑙 = 𝑋 → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ↔ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 45 | 42 44 | syl5ibrcom | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑙 = 𝑋 → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) ) |
| 46 | 45 | imp | ⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝑙 = 𝑋 ) → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) |
| 47 | 34 | ad2antlr | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 48 | 47 | r19.21bi | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 49 | 48 | adantr | ⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) ∧ ¬ 𝑙 = 𝑋 ) → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 50 | 22 23 46 49 | ifbothda | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 51 | 50 | ralrimiva | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 52 | dfral2 | ⊢ ( ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ¬ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) | |
| 53 | 51 52 | sylib | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ¬ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 54 | 53 | ex | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) → ¬ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
| 55 | 54 | con4d | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ) |
| 56 | 55 | imp | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 58 | fveq2 | ⊢ ( 𝑚 = 𝑋 → ( 𝑧 ‘ 𝑚 ) = ( 𝑧 ‘ 𝑋 ) ) | |
| 59 | csbeq1 | ⊢ ( 𝑚 = 𝑋 → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) | |
| 60 | csbeq1 | ⊢ ( 𝑚 = 𝑋 → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) | |
| 61 | 59 60 | difeq12d | ⊢ ( 𝑚 = 𝑋 → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 62 | 58 61 | eleq12d | ⊢ ( 𝑚 = 𝑋 → ( ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ↔ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ) |
| 63 | 57 62 | syl5ibrcom | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑚 = 𝑋 → ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) ∧ 𝑚 = 𝑋 ) → ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
| 65 | nfv | ⊢ Ⅎ 𝑚 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 | |
| 66 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 | |
| 67 | 66 | nfel2 | ⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 68 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑧 ‘ 𝑘 ) = ( 𝑧 ‘ 𝑚 ) ) | |
| 69 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 70 | 68 69 | eleq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 71 | 65 67 70 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 72 | 26 71 | sylib | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 73 | 72 | ad2antlr | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 74 | 73 | r19.21bi | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 75 | 74 | adantr | ⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) ∧ ¬ 𝑚 = 𝑋 ) → ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 76 | 20 21 64 75 | ifbothda | ⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 77 | 76 | ralrimiva | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 78 | simpll | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → 𝑋 ∈ 𝐴 ) | |
| 79 | iftrue | ⊢ ( 𝑚 = 𝑋 → if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) | |
| 80 | 79 61 | eqtrd | ⊢ ( 𝑚 = 𝑋 → if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 81 | 58 80 | eleq12d | ⊢ ( 𝑚 = 𝑋 → ( ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ) |
| 82 | 81 | rspcva | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 83 | 78 82 | sylan | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 84 | 83 | eldifbd | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ¬ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
| 85 | iftrue | ⊢ ( 𝑙 = 𝑋 → if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) = ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) | |
| 86 | 85 43 | eqtrd | ⊢ ( 𝑙 = 𝑋 → if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) = ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
| 87 | 35 86 | eleq12d | ⊢ ( 𝑙 = 𝑋 → ( ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 88 | 87 | notbid | ⊢ ( 𝑙 = 𝑋 → ( ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
| 89 | 88 | rspcev | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) → ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 90 | 78 84 89 | syl2an2r | ⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 91 | 77 90 | impbida | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 92 | nfv | ⊢ Ⅎ 𝑙 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) | |
| 93 | nfv | ⊢ Ⅎ 𝑘 𝑙 = 𝑋 | |
| 94 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐶 | |
| 95 | 93 94 28 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 96 | 95 | nfel2 | ⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 97 | 96 | nfn | ⊢ Ⅎ 𝑘 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 98 | eqeq1 | ⊢ ( 𝑘 = 𝑙 → ( 𝑘 = 𝑋 ↔ 𝑙 = 𝑋 ) ) | |
| 99 | csbeq1a | ⊢ ( 𝑘 = 𝑙 → 𝐶 = ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) | |
| 100 | 98 99 31 | ifbieq12d | ⊢ ( 𝑘 = 𝑙 → if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) = if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 101 | 30 100 | eleq12d | ⊢ ( 𝑘 = 𝑙 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
| 102 | 101 | notbid | ⊢ ( 𝑘 = 𝑙 → ( ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
| 103 | 92 97 102 | cbvrexw | ⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
| 104 | nfv | ⊢ Ⅎ 𝑚 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) | |
| 105 | nfv | ⊢ Ⅎ 𝑘 𝑚 = 𝑋 | |
| 106 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 | |
| 107 | 66 106 | nfdif | ⊢ Ⅎ 𝑘 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
| 108 | 105 107 66 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 109 | 108 | nfel2 | ⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 110 | eqeq1 | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 = 𝑋 ↔ 𝑚 = 𝑋 ) ) | |
| 111 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐶 = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) | |
| 112 | 69 111 | difeq12d | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
| 113 | 110 112 69 | ifbieq12d | ⊢ ( 𝑘 = 𝑚 → if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) = if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 114 | 68 113 | eleq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 115 | 104 109 114 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 116 | 91 103 115 | 3bitr4g | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
| 117 | 19 116 | bitr3id | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
| 118 | 18 117 | bitrd | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
| 119 | ibar | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) ) | |
| 120 | 119 | adantl | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) ) |
| 121 | 15 | biantrurd | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) ) |
| 122 | 118 120 121 | 3bitr3d | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) ) |
| 123 | eldif | ⊢ ( 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ↔ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) | |
| 124 | 12 | elixp | ⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
| 125 | 122 123 124 | 3bitr4g | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ↔ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
| 126 | 2 11 125 | eqrdav | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) |