This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isps | ⊢ ( 𝑅 ∈ 𝐴 → ( 𝑅 ∈ PosetRel ↔ ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq | ⊢ ( 𝑟 = 𝑅 → ( Rel 𝑟 ↔ Rel 𝑅 ) ) | |
| 2 | coeq1 | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑟 ) ) | |
| 3 | coeq2 | ⊢ ( 𝑟 = 𝑅 → ( 𝑅 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑅 ) ) | |
| 4 | 2 3 | eqtrd | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑅 ) ) |
| 5 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 6 | 4 5 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
| 7 | cnveq | ⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) | |
| 8 | 5 7 | ineq12d | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∩ ◡ 𝑟 ) = ( 𝑅 ∩ ◡ 𝑅 ) ) |
| 9 | unieq | ⊢ ( 𝑟 = 𝑅 → ∪ 𝑟 = ∪ 𝑅 ) | |
| 10 | 9 | unieqd | ⊢ ( 𝑟 = 𝑅 → ∪ ∪ 𝑟 = ∪ ∪ 𝑅 ) |
| 11 | 10 | reseq2d | ⊢ ( 𝑟 = 𝑅 → ( I ↾ ∪ ∪ 𝑟 ) = ( I ↾ ∪ ∪ 𝑅 ) ) |
| 12 | 8 11 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∩ ◡ 𝑟 ) = ( I ↾ ∪ ∪ 𝑟 ) ↔ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) |
| 13 | 1 6 12 | 3anbi123d | ⊢ ( 𝑟 = 𝑅 → ( ( Rel 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 ∩ ◡ 𝑟 ) = ( I ↾ ∪ ∪ 𝑟 ) ) ↔ ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) ) |
| 14 | df-ps | ⊢ PosetRel = { 𝑟 ∣ ( Rel 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ∧ ( 𝑟 ∩ ◡ 𝑟 ) = ( I ↾ ∪ ∪ 𝑟 ) ) } | |
| 15 | 13 14 | elab2g | ⊢ ( 𝑅 ∈ 𝐴 → ( 𝑅 ∈ PosetRel ↔ ( Rel 𝑅 ∧ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ) ) ) |