This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Field of a subposet. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psssdm.1 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | psssdm2 | ⊢ ( 𝑅 ∈ PosetRel → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑋 ∩ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psssdm.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | dmin | ⊢ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( dom 𝑅 ∩ dom ( 𝐴 × 𝐴 ) ) | |
| 3 | 1 | eqcomi | ⊢ dom 𝑅 = 𝑋 |
| 4 | dmxpid | ⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 | |
| 5 | 3 4 | ineq12i | ⊢ ( dom 𝑅 ∩ dom ( 𝐴 × 𝐴 ) ) = ( 𝑋 ∩ 𝐴 ) |
| 6 | 2 5 | sseqtri | ⊢ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑋 ∩ 𝐴 ) |
| 7 | 6 | a1i | ⊢ ( 𝑅 ∈ PosetRel → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝑋 ∩ 𝐴 ) ) |
| 8 | simpr | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) | |
| 9 | 8 | elin2d | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 10 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) → 𝑥 ∈ 𝑋 ) | |
| 11 | 1 | psref | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ 𝑋 ) → 𝑥 𝑅 𝑥 ) |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 𝑅 𝑥 ) |
| 13 | brinxp2 | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝑥 ) ) | |
| 14 | 9 9 12 13 | syl21anbrc | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | 15 15 | breldm | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 → 𝑥 ∈ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 17 | 14 16 | syl | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ( 𝑋 ∩ 𝐴 ) ) → 𝑥 ∈ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 18 | 7 17 | eqelssd | ⊢ ( 𝑅 ∈ PosetRel → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( 𝑋 ∩ 𝐴 ) ) |