This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008) (Proof shortened by Mario Carneiro, 4-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asymref2 | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asymref | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) | |
| 2 | albiim | ⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) |
| 4 | r19.26 | ⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) | |
| 5 | ancom | ⊢ ( ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) | |
| 6 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 7 | 6 | imbi1i | ⊢ ( ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 9 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 10 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ) ) |
| 12 | anidm | ⊢ ( ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ↔ 𝑥 𝑅 𝑥 ) | |
| 13 | 11 12 | bitrdi | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 𝑅 𝑥 ) ) |
| 14 | 13 | equsalvw | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ 𝑥 𝑅 𝑥 ) |
| 15 | 8 14 | bitri | ⊢ ( ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ 𝑥 𝑅 𝑥 ) |
| 16 | 15 | ralbii | ⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ) |
| 17 | df-ral | ⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) | |
| 18 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | vex | ⊢ 𝑦 ∈ V | |
| 21 | 19 20 | opeluu | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑦 ∈ ∪ ∪ 𝑅 ) ) |
| 22 | 21 | simpld | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 23 | 18 22 | sylbi | ⊢ ( 𝑥 𝑅 𝑦 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 25 | 24 | pm2.24d | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 = 𝑦 ) ) |
| 26 | 25 | com12 | ⊢ ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 27 | 26 | alrimiv | ⊢ ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 28 | id | ⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) | |
| 29 | 27 28 | ja | ⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 30 | ax-1 | ⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) → ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) | |
| 31 | 29 30 | impbii | ⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 32 | 31 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 33 | 17 32 | bitri | ⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 34 | 16 33 | anbi12i | ⊢ ( ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 35 | 4 5 34 | 3bitri | ⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 36 | 1 3 35 | 3bitri | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |