This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psdmrn | ⊢ ( 𝑅 ∈ PosetRel → ( dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 | ⊢ dom 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) | |
| 2 | dmrnssfld | ⊢ ( dom 𝑅 ∪ ran 𝑅 ) ⊆ ∪ ∪ 𝑅 | |
| 3 | 1 2 | sstri | ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
| 4 | 3 | a1i | ⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 ⊆ ∪ ∪ 𝑅 ) |
| 5 | pslem | ⊢ ( 𝑅 ∈ PosetRel → ( ( ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) → 𝑥 𝑅 𝑥 ) ∧ ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 𝑅 𝑥 ) ∧ ( ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) → 𝑥 = 𝑥 ) ) ) | |
| 6 | 5 | simp2d | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 𝑅 𝑥 ) ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 7 | breldm | ⊢ ( 𝑥 𝑅 𝑥 → 𝑥 ∈ dom 𝑅 ) |
| 9 | 6 8 | syl6 | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ dom 𝑅 ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ dom 𝑅 ) |
| 11 | 4 10 | eqssd | ⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅 ) |
| 12 | ssun2 | ⊢ ran 𝑅 ⊆ ( dom 𝑅 ∪ ran 𝑅 ) | |
| 13 | 12 2 | sstri | ⊢ ran 𝑅 ⊆ ∪ ∪ 𝑅 |
| 14 | 13 | a1i | ⊢ ( 𝑅 ∈ PosetRel → ran 𝑅 ⊆ ∪ ∪ 𝑅 ) |
| 15 | 7 7 | brelrn | ⊢ ( 𝑥 𝑅 𝑥 → 𝑥 ∈ ran 𝑅 ) |
| 16 | 6 15 | syl6 | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ ran 𝑅 ) ) |
| 17 | 16 | ssrdv | ⊢ ( 𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ ran 𝑅 ) |
| 18 | 14 17 | eqssd | ⊢ ( 𝑅 ∈ PosetRel → ran 𝑅 = ∪ ∪ 𝑅 ) |
| 19 | 11 18 | jca | ⊢ ( 𝑅 ∈ PosetRel → ( dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅 ) ) |